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Abstract

For a given problem, the optimal Markov policy over a finite
horizon is a conditional plan containing a potentially large
number of branches. However, there are applications where it
is desirable to strictly limit the number of decision points and
branches in a plan. This raises the question of how one goes
about finding optimal plans containing only a limited num-
ber of branches. In this paper, we present an any-time algo-
rithm for optimalk-contingency planning. It is the first opti-
mal algorithm for limited contingency planning that is not an
explicit enumeration of possible contingent plans. By mod-
elling the problem as a partially observable Markov decision
process, it implements the Bellman optimality principle and
prunes the solution space. We present experimental results of
applying this algorithm to some simple test cases.

Introduction
Markov decision processes(MDPs) provide a powerful theo-
retical framework for planning under uncertainty with prob-
abilities, costs and rewards (Puterman 1994). In this frame-
work, the optimal solution to a problem is an optimalpolicy,
that is, a rule specifying the action to perform for each situ-
ation we could possibly be in. For a finite planning horizon,
this policy represents aconditionalor contingentplan with
a branch for each possible situation that might be encoun-
tered during execution. Therefore, the optimal contingent
plan may be large and complex, since it may contain a large
number of branches.

There are applications where this size and complexity is
a significant drawback. Consider, for example, the problem
of constructing daily plans for a Mars rover. There is a great
deal of uncertainty in this domain, concerning such things
as time, energy usage, data storage available, and position
(see (Bresinaet al. 2002) for a more detailed description).
However, there are some compelling reasons for keeping the
plans simple:

• There is a need for cognitive simplicity – plans must be
simple enough that they can be displayed easily, and un-
derstood and modified by both Earth scientists and mis-
sion operations personnel.

• Plans must undergo very detailed analysis and simula-
tion using complex models of illumination, energy con-
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sumption, thermal characteristics, kinematics, and terrain.
There is limited time to do this analysis, so plans must be
kept structurally simple in order to expedite this process.

• There is limited communication bandwidth and limited
storage on board the rover, so there is an advantage to
keeping plans small.

As a result, we are interested inlimited contingency plan-
ning, that is planning where only a limited number of con-
ditional branches are permitted. In practice, rover planning
problems are often large and complex, so we must resort to
heuristic or approximate techniques for finding reasonable
contingency plans (Deardenet al. 2003). Nevertheless, for
smaller problems, it would be useful to be able to compute
optimal solutions, so that we have some means of evaluating
the performance and plan quality for heuristic techniques.
More precisely, we would like to be able to compute the op-
timal k-contingency plan for a problem – that is, the optimal
plan containingk or fewer contingency branches.

In general, the problem of contingency planning is known
to be quite hard (Littman, Goldsmith, & Mundhenk 1998),
andk-contingency planning is no exception. Ifk = ∞, k-
contingency planning reduces to finding the optimal policy.
If k = 0, k-contingency planning reduces to stochasticcon-
formantplanning, where we must find the best unconditional
sequence of actions (Hyafil & Bacchus 2003). One can ar-
gue that limited contingency planning is harder than both
conformant planning and searching for the optimal policy.
First, the search space of conformant planning (that is, the
set of all sequences of actions) is exponentially smaller than
the search space ofk-contingency planning (the set of allk-
contingency plans). Second, although the set of all policies
is usually larger than the set of allk-contingency plans, dy-
namic programming (DP) techniques are able to significantly
prune the search for an optimal policy by using Bellman’s
optimality principle. However, to our knowledge, there is
no previous algorithm that is able to implement Bellman’s
optimality principle for limited contingency planning.1

1The problem is that the classical Markov state is insufficient:
knowing the best limited contingency plan from timet + 1 to the
horizon for each state we could be in at timet + 1 does not help
to find the best plan from timet to the horizon. In fact, the action
performed at timet may bring us no certainty about the state at
time t + 1, and the best plan for an uncertain initial state may be
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Recently, Hyafil and Bacchus (Hyafil & Bacchus 2003)
cast the stochastic conformant planning problem into the
partially observable Markov decision process (POMDP)
framework (Kaelbling, Littman, & Cassandra 1998) by ob-
serving that limiting oneself to unconditional plans is equiv-
alent to discarding the observation of the current state that
is available at each time step. Therefore, the problem
of conformant planning can be formalized as a fullynon-
observable Markov decision process(NOMDP), which is a
particular case of aPOMDP, so the classical solutions for
POMDPs (Cassandra, Littman, & Zhang 1997; Kaelbling,
Littman, & Cassandra 1998) can be applied. As Hyafil and
Bacchus point out, the drawback of this approach is that it
requires computing optimal solutions for states that may be
unreachable, but its strength is that it prunes the search space
by using Bellman’s optimality principle. For several test bed
problems, Hyafil and Bacchus show that this approach out-
performs a CSP algorithm that is able to do some reacha-
bility analysis but cannot prune the search space. Moreover,
the superiority of thePOMDPapproach becomes apparent as
the size of the problems grows.

In this paper, we presentOKP, an anytime algorithm for
optimal k-contingency planning. As in (Hyafil & Bacchus
2003), we use aPOMDP framework to model the problem,
which allows using Bellman’s optimality principle to speed
up the search. The difference is that we must encode the
number of branches allowed in the state description of the
POMDP. In effect, this amounts to keeping multiple copies of
the POMDP corresponding to different numbers of branches
allowed. When we choose to make an observation in one
POMDP, we drop into aPOMDP with fewer branches al-
lowed. When all the branches are used up, we end up in
thePOMDP for the conformant planning problem as defined
by Hyafil and Bacchus.

In the first section, we review the Hyafil and Bacchus
technique for encoding conformant planning as aPOMDP.
We then move on to1-contingency planning, followed by
balancedk-contingency planning. In the next section,
we further generalize this to arbitraryk-contingency plan-
ning. Finally, we present experimental results comparing
OKP against a brute force search technique for findingk-
contingency plans.

Optimal Balancedk-Contingency Planning
Our formalism uses severalPOMDPs defined over different
state, action and observation spaces, so it is important to
understand the role of eachPOMDP. The first POMDP we
introduce,M , represents the planning problem in the classi-
cal sense. In this paper, our goal is to find optimal contin-
gent plans for the processM . M can be a fully observable
MDP, which we see as a particular case of aPOMDP. In our
framework, it means that we can observe exactly the cur-
rent state each time we decide to branch. In the general case
(whenM is not anMDP), we have only noisy observations
to make branching decisions. Later, we introduce several
otherPOMDPs,{Mk : k ≥ 0}, obtained by transforming the
original processM in such a way that an optimal solution to

different from the best plan in each state.

Mk is an optimalk-contingency plan forM . So, eachMk

representsthe problem ofk-contingency planning inM .
The planning problem for which we want to find op-

timal contingent plans is modelled as thePOMDP M =
(S, A,Ω, T, R,O), where:
• S, A andΩ are the (finite) set of states, actions and obser-

vations (respectively);

• T is the transition probability:T (s, a, s′) is the probabil-
ity of moving to states′ if we execute actiona in state
s;

• R is the reward function:R(s, a) is the (expected) reward
for executing actiona in states;

• and O is the observation probability:O(a, s′, o) is the
probability of observingo ∈ Ω when an execution of ac-
tion a leads to states′. In this section, we assume that
the observation probabilities ofM do not depend on the
last action executed, and we denote byO(s′, o) the (well
defined) probability of observingo ∈ Ω when arriving in
s′ ∈ S. We relax this assumption in the next section.

If M is a fully-observableMDP, thenΩ = S andO(s′, s′) =
1 for all s′ ∈ S.

The problem we tackle is this section, which we callbal-
ancedk-contingency planning, is the following: givenM ,
H, and a probability distribution over the initial statex0(s)
(the initial belief), find the best contingent plan where there
are (at most)k branch points in each possible trajectory
through the plan. That is, the (largest possible) plan struc-
ture is a balanced tree withk branch points in each path from
the root (initial time) to a leaf (planning horizon). The op-
timality criterion used is the classical expected cumulative
reward (discounted or not) up to the planning horizonH:

E
[∑H

t=1 γtr(t) | x0

]
, r(t) is the reward received at timet

andγ ∈ [0; 1] is the discount factor.
First, we assume that we must create one branch for each

observation that can be made at each branch point (so this is
actually some form of balancedk|O|-contingency planning
in a POMDP, andk|S|-contingency planning in anMDP). We
show how to relax this constraint in the next section.

Conformant Planning
When k = 0, the problem is that of conformant plan-
ning: we must find the best unconditional sequence ofH
actions. Hyafil and Bacchus (Hyafil & Bacchus 2003) cast
the stochastic conformant planning problem into thePOMDP
framework, observing that limiting oneself to unconditional
plans is equivalent to discarding the observation that is avail-
able at each step. Then, conformant planning is aNOMDP.
Formally, the optimal conformant plan is the optimal solu-
tion of thePOMDP M0 = (S0, A0,Ω0, T 0, R0, O0) where
S0 = S; A0 = A; Ω0 contains only one element,o∅, that
basically says“I can’t see anything informative”(hence,
M0 is a NOMDP); T 0(s, a, s′) = T (s, a, s′), R0(s, a) =
R(s, a), andO0(a, s′, o∅) = 1 for all (s, a, s′) ∈ S×A×S.

As for any POMDP (Kaelbling, Littman, & Cassandra
1998), the optimal solution ofM0 over the finite hori-
zon H can be determined in finite time usingvalue itera-
tion (VI ), which is a form of dynamic programming (DP).
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Starting from the planning horizonH, we proceed back-
ward through time to construct a value functionV 0

t for each
t ∈ {0; 1; . . .H}. The valueV 0

t (x) represents the expected
reward we get by executing an optimal conformant plan for
the starting beliefx over the planning horizont. In the par-
ticular case of theNOMDP M0, the equations ofVI are the
following (the superscript 0 ofV andQ functions is a refer-
ence tok, the number of branch points in the plan):

V 0
H(x) = 0 , (1)

and, for allt ∈ {0, 1, . . . H − 1}:
V 0

t (x) = max
a∈A

[
Q0

t (x, a)
]

, (2)

Q0
t (x, a) =

(∑
s∈S

x(s)R(s, a)

)
+ γV 0

t+1(Ba
o∅(x)) . (3)

Ba
o∅

(x) represents the belief posterior to actiona and obser-
vationo∅, given the prior beliefx. It is given by Bayes’ rule:

Ba
o∅(x)(s′) =

∑
s∈S x(s)T (s, a, s′)

Z
. (4)

Since we do not make any observation at all, whether the
original processM is a POMDP or a MDP does not influ-
ence in any way the optimal solution of conformant plan-
ning. Note that the observation setΩ and the observation
functionO are not used anywhere in the equations above.

Practical implementations ofVI exploit the fact that the
value function is always a piecewise linear convex func-
tion of the beliefx. The functionsV 0

t (·) andQ0
t (·, a) are

represented as finite sets ofα-vectors, each of them corre-
sponding to a linear function ofx. V 0

t andQ0
t are then de-

fined as the supremum (max) of the set of linear functions
that represent them. All operations in equations (2) and (3)
reduce to manipulation and production ofα-vectors. The
sets ofα-vectors are regularly purged of vectors represent-
ing linear functions that are optimal nowhere in the belief
space. Many algorithms differ only in the way they purge
sets ofα-vectors. Although the belief space is continuous,
all the computation is finite (Kaelbling, Littman, & Cassan-
dra 1998; Cassandra, Littman, & Zhang 1997).

The value function constructed when solvingM0 up to
the planning horizonH contains the expected reward of the
best conformant plan in each possible initial belief state, and
for each planning horizon less than or equal toH. To get the
optimal plan for a particular starting beliefx0 (for instance,
the certainty to be in a given state) and horizonH, we must
simulate a trajectory by always executing the optimal action
for the current belief state, which requires monitoring the
belief state along the trajectory using equation (4). Since
there is only one possible observation at each step, there is
always only one possible belief at the next step. So, the
trajectory may never branch.2 We could as easily extract the

2It is also possible to simulate trajectories by following point-
ers fromα-vectors at timet to α-vectors at timet + 1 established
when solvingM0, instead of maintaining the current belief. How-
ever, this technique appeared to be much slower in the context of
OKP with k > 0, because it does not allownot building a branch
for observations that are impossiblegiven the current beliefduring
plan extraction.

optimal conformant plan for another starting belief and/or
another planning horizonh < H. All the information that
is important and hard to calculate is in the value function,
which is computed only once. InOKP, we do not need to
extract any plan before having reached the levelk where we
decide to stop.

1-Contingency Planning

Similarly, the optimal 1-contingency plan is the optimal so-
lution of a POMDPM1 = (S1, A1,Ω1, T 1, R1, O1). M1 is
constructed by duplicatingM0 and adding anobserve-and-
branchaction between the two copies ofM0. Thus, each
states ∈ S of the originalPOMDP M is represented twice
in M1. One copy represents being ins before the plan has
branched, and the other represents being ins after the plan
has branched. The observe-and-branch action induces an ir-
reversible transition from states of the first type to states of
the second type. As fork = 0, the problem is completely
non-observable, except that the observe-and-branch action
allows making an ordinary observation as specified in the
originalPOMDPM , and conditioning the next actions on this
observation. IfM is aMDP, then the observe-and-branch ac-
tion sees the current state exactly. Formally:

States: S1 = S × {0; 1}. The pair(s, k), s ∈ S and
k ∈ {0; 1} , represents being ins and having the possibility
of using the observe-and-branch actionk times in the future.
Each(s, 0) may be seen as an element ofS0, the state space
of the conformant planningNOMDP M0.

Belief states: The number of branch points that are still
available for the future,k, is always known with certainty.
All the uncertainty on the state(s, k) of M1 comes from
the uncertainty ons. Therefore, a belief state forM1 is a
pair (x, k) wherex is a probability distribution overS and
k ∈ {0; 1}.

Actions: A1 = A ∪ {aob}, whereaob is the observe-and-
branch action.aob is executables only in states(s, 1), s ∈ S.
aob is a specialinstantaneousaction: executing it does not
increment time. As shown below, it can be used only once in
each trajectory. The other actionsa ∈ A are calledordinary
actions.

Observations: Formally,Ω1 = Ω. However, useful obser-
vations can be made only through the observe-and-branch
actionaob. All other actions provide a non informative ob-
servation. To model this, we select arbitrarily one observa-
tion of the original process, we rename ito∅, and we use
it to represent the non-informative observation produced by
all actions different fromaob. Observed after an ordinary
actiona ∈ A, o∅ means“I can’t see anything interesting”,
and when it is observed afteraob, it has the same semantics
as in the original processM .
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Effects of ordinary actions: The states(s, 0), s ∈ S, rep-
resent an absorbing subset, that is, we cannot get out of this
subset once we enter it (remember that only ordinary ac-
tions are possible in such states). All the transition probabil-
ities, rewards and observation probabilities involving only
such states are defined as inM0. The only way to get out
from states of type(s, 1), s ∈ S, is through the observe-
and-branch action. The transition probabilities, reward and
observations involving only states of the type(s, 1), s ∈
S, and not the observe-and-branch actionaob, are also
defined exactly as the transitions, rewards, and observa-
tions in M0. That is: T 1((s, k), a, (s′, k)) = T (s, a, s′),
R1((s, k), a, (s′, k)) = R(s, a, s′), andO1(a, (s′, k), o∅) =
1, for all (s, k, a, s′) ∈ S × {0; 1} ×A× S.

Effect of the observe-and-branch action: executing ac-
tion aob in state(s, 1) leads with certainty to state(s, 0),
with the same number of time-steps to go. This ac-
tion provides no reward and allows us to make an obser-
vation following the observation probability of the orig-
inal POMDP. Formally: T 1((s, 1), aob, (s, 0)) = 1,
R1((s, 1), aob, (s, 0)) = 0, and O1(aob, (s, 0), o) =
O(s, o), for all (s, o) ∈ S × Ω.

The fact that the observe-and-branch action is instanta-
neous might make the solution ofM1 with VI look a little
bit complicateda priori. However, it turns out that optimiza-
tion over a finite horizon is straightforward. First, for allx
and all t ≤ H, the value of belief state(x, 0) at time t in
M1 is equal toV 0

t (x) in M0. In other words, the result of
the computation at level 0 (equations (1) through (3)) can be
reused as is, it gives the value of each belief state(x, 0) of
M1 at allt ∈ {0; 1; . . .H}. Then, if we denote byV 1

t (x) the
value at timet of belief(x, 1) in M1, thenVI is summarized
by the following equations:

V 1
H(x) = 0 , (5)

and, for allt ∈ {0, 1, . . . H − 1}:

V 1
t (x) = max

{
Q1

t (x, aob);max
a∈A

[
Q1

t (x, a)
]}

, (6)

with

Q1
t (x, a) =

(∑
s∈S

x(s)R(s, a)

)
+ γV 1

t+1(Ba
o∅(x)) (7)

for all a ∈ A (using equation (4) to calculateBa
o∅

(x)), and

Q1
t (x, aob) =

∑
o∈Ω

Q1
t (x, aob, o) , (8)

Q1
t (x, aob, o) =

∑
s∈S

x(s)O(s, o)V 0
t (Baob

o (x)) , (9)

whereBaob

o (x) is the posterior belief after observingo, given
by Bayes’rule:

Baob

o (x)(s′) =
x(s′)O(s′, o)

Z
. (10)

Note that if the original problem is anMDP, then equations
(8) through (9) simplify as:

Q1
t (x, aob) =

∑
s∈S

x(s)V 0
t (xs) , (11)

where beliefxs gives states with probability 1.
So, a practical solution ofM1 requires (i) having solved

M0 in advance; and (ii) one (backward) pass ofVI through
states(s, 1), s ∈ S, following equations (5) to (11). During
the calculation ofV 1, we readα-vectors in the solution of
M0 to evaluate the observe-and-branch actions. Once the
value functionV 1 is calculated, we can extract the optimal
1-contingency plan for a given initial beliefx0 by simulating
a trajectory inM1. As long as the observe-and-branch ac-
tion is not used, the trajectory may never branch. If at some
point theQ-valuesQ1

t indicate thataob is the optimal ac-
tion for the current belief state, then a branch point is added
to the plan. We must then calculate the posterior belief for
each observationo ∈ Ω using equation (10) (that is, for each
states ∈ S if M is a MDP). Finally, the optimal branch for
eacho is constructed by simulating a (non-branching) tra-
jectory inM0. Becauseaob is not present inM0, no more
branch points can be added. Note that it may happen that
the observe-and-branch action is never used during the travel
throughM1. This shows that there exists a conformant plan
that is at least as good as the best 1-contingency plan, so
there is no need to use an observe-and branch action. Note
also that the optimal solution ofM1 contains the value of
the bestk-contingency plan for allk ∈ {0; 1}, all possible
initial belief x0, and all planning horizons less than or equal
to H.

Balancedk-Contingency Planning
In general, thek-contingency planning problem (k ≥ 2)
may be modelled as aPOMDPMk build onMk−1 by adding
a copy ofS0 connected to the(k − 1)th level of Mk−1 by
the observe-and-branch action. All the equations of the pre-
vious section can be re-used by replacing the superscript 1
by k and the superscript 0 byk − 1. That is:

V k
H(x) = 0 , (12)

V k
t (x) = max

{
Qk

t (x, aob);max
a∈A

[
Qk

t (x, a)
]}

, (13)

Qk
t (x, a) =

(∑
s∈S

x(s)R(s, a)

)
+ γV k

t+1(Ba
o∅(x)) , (14)

Qk
t (x, aob) =

∑
o∈Ω

Qk
t (x, aob, o) , (15)

Qk
t (x, aob, o) =

∑
s∈S

x(s)O(s, o)V k−1
t (Baob

o (x)) . (16)

If the solution ofMk−1 is known, then the solution ofMk

requires only one pass ofVI through states at levelk (that
is, states(s, k), s ∈ S), readingα-vectors inV k−1

t to evalu-
ate the observe-and-branch action. Once the value functions
V k

t are determined, we can easily extract the best (balanced)
k-contingency plan for a given initial belief by simulating
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a trajectory inMk. When the observe-and-branch action is
used, the trajectory branches and one branch for each possi-
ble observationo ∈ Ω must be built by simulating a trajec-
tory in Mk−1. This is why the algorithm producesbalanced
contingency plans: at each branch point at levell ≤ k, each
exiting branch(which is in fact a tree) may contain up to
l − 1 branch points (equation (16)). Therefore, each tra-
jectory through the plan tree may traverse up tok branch
points. As previously, the algorithm does not have to use all
the branch points allowed if there is no utility to be gained
by doing so. Therefore, the version ofOKP presented in
this section produces an optimal plan withat mostk branch
points in each trajectory.3

Extensions
OKP may easily be adapted to other variants of the limited
contingency planning problem.

Types of Plan
First, the algorithm can search for other type of plans.
For instance, we may search for the optimallinear k-
contingency plan, that is, the best plan with (at most)k
branch points, all of them on one trajectory through the plan.
In this case, each levell ∈ {1; 2; . . . k} of Mk contains|Ω|
observe-and-branch actions,{aob

o , o ∈ Ω}. The semantics of
aob

o is “observe, branch, and use thel − 1 remaining branch
points in the branch associated with observationo”. Equa-
tion (13) becomes

V k
t (x) = max

{
max
o∈Ω

[
Qk

t (x, aob
o )
]
;max

a∈A

[
Qk

t (x, a)
]}

,

where

Qk
t (x, aob

o ) = Qk−1
t (x, aob

o , o) +
∑

o′∈Ω\{o}

Q0
t (x, aob

o , o′) .

Similarly, we can tackle thestrict k-contingency plan-
ning problem (at mostk branches over the whole plan with-
out any other constraint), by adding multiple observe-and-
branch actions at each level ofMk. Here we must model
one observe-and-branch action for each possible way to dis-
tribute thek − 1 remaining branch points in the|Ω| exiting
branches. Therefore, the number of different observe-and-
branch actions required at levelk is

(|Ω|+ k − 2)!
(|Ω| − 1)!(k − 1)!

.

So this variant ofOKP is particularly impractical. As shown
below, a way to limit the complexity of the algorithm is to
change the branch conditions.

3Note that the plan extraction phase of this version ofOKP is
exponential ink. This is an artifact due to the particular variant of
the problem addressed. What we call a “balancedk-contingency”
plan actually contains a number of branch points exponential ink.
Therefore, extracting such a plan from the solution of thePOMDP
is exponential ink. This is not the case of the other variants of the
algorithm presented in the next section.

Branch Conditions
The algorithm of the previous section create one particular
branch for each observationo ∈ Ω that can possibly be made
after the observe-and-branch action. In other words, there
may be up to|Ω| branches stemming from each branch point
of the plan. In some variants of the limited contingency plan-
ning problem, we may want to limit the number of branches
exiting from each branch point by grouping several observa-
tions together.

OKP can be adapted to any kind of branch condition. For
instance, if we want the plan to use binary branch points,
then we must create one observe-and-branch actionaob

Ω′ for
each possible way to partition the observation setΩ in two
non-empty subsetsΩ′ andΩ \ Ω′. Equation (13) becomes

V k
t (x) = max

{
max
Ω′

[
Qk

t (x, aob
Ω′)
]
;max

a∈A

[
Qk

t (x, a)
]}

,

Qk
t (x, aob

Ω′) = Qk
t (x, aob

Ω′ ,Ω′) + Qk
t (x, aob

Ω′ ,Ω \ Ω′) ,

where

Qk
t (x, aob

Ω′ ,Ω′) = Pr(Ω′ | x)V k−1
t (Baob

Ω′
Ω′ (x)) ,

Pr(Ω′ | x) =
∑
s∈S

x(s)
∑
o∈Ω′

O(s, o) ,

Baob
Ω′

Ω′ (x)(s′) =
x(s′)

∑
o∈Ω′ O(s′, o)
Z

,

and similarly forQk
t (x, aob

Ω′ ,Ω \ Ω′). Note that there are
2|Ω| − 2 such actions (subsetsΩ′), which is a considerable
number in most cases.

The equations above correspond to balancedk-
contingency planning. If we are looking for other types of
plan, then we must create a different observe-and-branch
action for each possible branch conditionandeach possible
way of distributing the remaining branch points in the
stemming branches. However, the number of ways of
distributing branch points is greatly reduced when we use
compact branch conditions. For instance, if we look for the
optimal plan with at mostk binary branch points overall,
then there are2|Ω| − 2 different branch conditions, but only
k ways to distribute thek − 1 remaining branch points in
the two exiting branches. Therefore, the total number of
observe-and-branch actions at levelk is (2|Ω| − 2)k.

The computational price of compact branch conditions
can be greatly reduced in the particular case where the ob-
servationo represents a numerical value.4 In this case, we
can focus the search on a particular kind of branch condi-
tions based on threshold. Each branch point is defined by a
thresholdoT ∈ O. There are two exiting branches: one cor-
responds to observing a valueo ∈ O less than or equal tooT ,
and the other corresponds to values greater thanoT . Thus,
the total number of different branch conditions is|Ω|−1. As
there are only two exiting branches, there are onlyk ways
to distribute remaining branch points. Therefore, the total
number of observe-and-branch actions at levelk of the strict
k-contingency planningPOMDP is only (|Ω| − 1)k.

4Actually, it is not necessary that the observation is a numerical
variable, but it is sufficient that there is a complete order defined
over it.
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General POMDPs
Finally we can relax the hypothesis on the observation prob-
abilities of the originalPOMDP M . In the previous sec-
tion, we assumed that the observation probabilities depend
only on the arrival states′ (that is,O(s′, o)), while the gen-
eral formalism ofPOMDPs assumes that they also depend
on the last action (O(a, s′, o)), which allows a richer model
of sensory actions. The problem is that, when we move to
this more genral framework, the observation probabilities of
aob in Mk, previously defined asOk(aob, (s, k − 1), o) =
O(s, o), is not well defined anymore. The observation fol-
lowing the use of the observe-and-branch action depends on
the action performed at the previous time step, which vio-
lates the (first order) Markov property.

One way to deal with this situation is to introduce the
last action executed into the Markov state ofMk. Another
equivalent way to model this is to proceed as follows: in-
stead of addingNk observe-and-branch actions to the pre-
existing |A| actions at each levelk (whereNk is the total
number of branch conditions and ways of distributingk − 1
remaining branch points in the exiting branches), we create
Nk (new) copies of each actiona ∈ A. Each copy corre-
sponds to executinga, and then branching the plan follow-
ing the protocol of a particular observe-and-branch action.
For instance, in the case of balancedk-contingency plan-
ning with |Ω|-ary branch points (as in the first algorithm),
we duplicate each actiona ∈ A and callã its copy (Ã is the
set of all copies).ã represents executinga, not discarding
the resulting observation, and branching the plan based on
this observation following the protocol of actionaob of the
first algorithm. The equations ofVI become:

V k
t (x) = max

{
max
a∈A

[
Qk

t (x, a)
]
;max

ã∈Ã

[
Qk

t (x, ã)
]}

,

Qk
t (x, ã) =

∑
o∈Ω

Qk
t (x, ã, o) ,

Qk
t (x, ã, o) =∑

s∈S

x(s)O(s, o)
(
R(s, a) + γV k−1

t+1 (Bã
o (x))

)
,

Bã
o (x)(s′) =

x(s′)O(a, s′, o)
Z

.

Note that we are not concerned with this issue if the original
processM is a fully observableMDP.

Experiments
We implementedOKP using Cassandra’sPOMDP solver
available online.5 We used the witness algorithm (Kael-
bling, Littman, & Cassandra 1998) to solveOKP’s multiple
level POMDPs. The results presented in this first version of
the paper concern the variant ofOKP that searches for bal-
anced contingent plans, building a branch for each possible
observation, and for generalPOMDPs. We focus on two sim-
ple test bed problems. To evaluate the performance ofOKP,
we implemented in the same environment an algorithm that

5http://www.cs.brown.edu/research/ai/pomdp/

systematically searches and evaluates all possible contingent
plans for a givenk, horizon and initial belief. This is, to our
knowledge, the only (other) technique available for building
optimal limited contingency plans. Its performance gives an
idea of the size of the search space, and howOKP is able to
prune the search using Bellman’s optimality principle.

The first problem we used is a variant of the tiger problem
(Kaelbling, Littman, & Cassandra 1998). In this problem,
the agent is standing in front of two doors (left and right).
Behind one door lies a dangerous tiger, and there is a reward
behind the other door. Therefore, there are two different
world states:tiger–left andtiger–right. The initial position
of the tiger is unknown, and the initial probability on the
tiger position is uniform over the two doors. The agent has
three possible actions: opening one of the doors (open–left
andopen–right), or listening to try to guess where the tiger
is (listen). Thelistenaction does not change the state of the
world, it costs 1 unit of utility, and provides a noisy obser-
vation that can take two possible values:hear–tiger–leftand
hear–tiger–right. If the state of the world istiger–left, then
the probability of observinghear–tiger–leftis 0.85 and the
probability of observinghear–tiger–rightis 0.15. Similarly,
the probability of hearing the tiger to the right when the tiger
is actually to the right is 0.85. Opening the door behind
which the tiger lies provides a “reward” of -10. Opening
the other door brings a reward of +6. After opening a door,
the problem is reset to its original state (that is, the agent
is brought back in front of the doors and the new position
of the tiger is drawn at random uniformly). Given these pa-
rameters, the optimal conformant plan over a horizon ofH
time-steps is tolistenH times and never act. At each step,
it provides the reward−1 with certainty, while opening an
arbitrary door (we are not allowed to condition the choice
of the door on the result of previouslisten actions) brings
the expected reward: 0.5 (-10) + 0.5 (6) = -2. The discount
factor is set to 1 (no discount).

We ranOKP and plan enumeration on the tiger problem
for different planning horizonsH and levelsk. Fig. 1 shows
the optimal contingent plans obtained with a sample of small
values forH andk. Fig. 2 shows the evolution of the value
of the optimal contingent plan as a function ofk and H.
Finally, Fig. 3 shows the evolution of the total time taken by
the algorithm as a function ofk andH. These results clearly
show the exponential blow-up of the search space and how
OKP is able to resist it by efficiently pruning the search.

The second problem is a small maze world due to
Horstmann and represented in Fig. 4. In this problem , the
agent starts from the location marked with an S and must
end-up in the goal location G. The agent can use 4 actions,
N, S, E and W, that allow it to move 1 or 2 positions in the
desired direction with equal probability (unless a wall blocks
the way). The goal state is absorbing. The observation avail-
able (when we decide to branch) is the presence or absence
of a wall on each side of the square that defines the agent’s
location. Thus, there are 8 different possible observations
(and 11 states). The agent gets a zero reward at every step
except when it enters the goal state. Therefore, there is no
time pressure on the agent: it does not get a bigger reward
for getting to the goal earlier, and it must simply maximize
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Figure 1: Optimal contingent plans for the tiger problem.

its probability of reaching the goal inside of the planning
horizon. Fig. 4 contains an example of an optimal contin-
gent plan for this problem. Fig. 5 and 6 show the evolution
of the value of the optimal plan and of the execution time
of the two algorithms on this problem. They show the same
exponential reduction of the complexity due toOKP.

These results are consistent with most of the results of
Hyafil and Bacchus (Hyafil & Bacchus 2003). They show
that Bellman’s optimality principle allows a drastic reduc-
tion in the complexity of the search that largely compensates
for the fact that we have to deal with (belief) states that are
unreachable. They suggest thatDP may be the best available
alternative for all sorts ofoptimizationplanning problems
where we have to find the best plan over the set of all possi-
ble plans, not just the search for the optimal policy.

Related Work
A number of probabilistic contingency planning systems
have been developed that can deal with partial observabil-
ity, including C-Buridan (Draper, Hanks, & Weld 1994),
DTPOP (Peot 1998), Mahinur (Onder & Pollack 1999), P-
Graphplan (Blum & Langford 1999),C-MAXPLAN (Majer-
cik & Littman 1999) andZANDER (Majercik & Littman
1999). The objective for most of these systems is to find a
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Figure 2: Value of the optimal contingent plans of the tiger
problem.
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Figure 3: Execution time ofOKP and plan enumeration in
the tiger problem.

plan with probability exceeding a given threshold. By rais-
ing the probability threshold, one could in theory force any
of these systems to continue searching for an optimal plan
or policy. However, there is no guarantee that they would
halt once the optimal policy was found. We also believe
it would be possible to extend some of these systems so
that they could be used to search fork-contingency plans.
In particular, it should be realtively easy to do this for the
partial-order planners C-Buridan (Draper, Hanks, & Weld
1994),DTPOP(Peot 1998), and Mahinur (Onder & Pollack
1999). For these systems, all that would be required is to
incorporate a counter into the planning algorithm so that no
more thank branches could be added to the plan. ForC-
MAXPLAN (Majercik & Littman 1999) andZANDER (Ma-
jercik & Littman 1999) one could write exclusion axioms
that prohibit more thank observation axioms from appear-
ing in the plan. However, if there aren possible observa-
tions,

(
n

k+1

)
exclusion axioms would be required.

Another tempting idea is to try to use the cost of observa-
tions to control the number of branches in a plan. Suppose
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Figure 4: Horstmann’s maze problem and the optimal con-
tingent plan fork = 1 andH = 9.
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we add a costC to the cost of each observation action. If one
setsC to∞, then aPOMDPsolver will produce a conformant
plan. IfC is set to0 the optimal policy will be produced. By
guessing the correct cost additionC we can trick aPOMDP
solver into finding a plan withk or fewer branches. Unfor-
tunately, this is not necessarily the optimalk-contingency
plan. The problem is, since observations have inflated cost,
thePOMDPsolver will naturally prefer to use them in states
that are less likely to occur. As a result, thek-contingency
plan that is produced may not have an optimal set of branch
points.

Conclusions

We presentedOKP, a new algorithm that is able to find op-
timal solutions to a variety ofk-contingency planning prob-
lems by pruning large portions of the search space. We have
shown experimentally thatOKP is able to dramatically re-
duce the time required to produce optimal limited contin-
gency plans. The basic principle ofOKP is to recognize that
the belief state borrowed fromPOMDPs contains all the in-
formation necessary to allow aDP solution to limited contin-
gency planning. This work, as well as some recent work on
conformant planning, shows that Bellman’s optimality prin-
ciple is a very powerful tool for many optimization planning
problems, and that the gain allowed by pruning the search
space may largely compensate for the necessity to plan for
all possible initial conditions.
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