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Abstract

Plan graphs are commonly used in planning to help compute
heuristic “distance” estimates between states and goals. A
few authors have also attempted to use plan graphs in proba-
bilistic planning to compute estimates of the probability that
propositions can be achieved and actions can be performed.
This is done by propagating probability information forward
through the plan graph from the initial conditions through
each possible action to the action effects, and hence to the
propositions at the next layer of the plan graph. The prob-
lem with these calculations is that they make very strong in-
dependence assumptions - in particular, they usually assume
that the preconditions for each action are independent of each
other. This can lead to gross overestimates in probability
when the plans for those preconditions interfere with each
other. It can also lead to gross underestimates of probabil-
ity when there is synergy between the plans for two or more
preconditions.

In this paper we introduce a notion of the binaryinteraction
between two propositions and actions within a plan graph,
show how to propagate this information within a plan graph,
and show how this improves probability estimates for plan-
ning. This notion of interaction can be thought of as a contin-
uous generalization of the notion of mutual exclusion (mutex)
often used in plan graphs. At one extreme (interaction= 0)
two propositions or actions are completely mutex. With inter-
action= 1, two propositions or actions are independent, and
with interaction> 1, two propositions or actions are syner-
gistic. Intermediate values can and do occur indicating differ-
ent degrees to which propositions and action interfere or are
synergistic. We compare this approach with another recent
approach by Bryce that computes probability estimates using
Monte Carlo simulation of possible worlds in plan graphs.

Introduction
Plan graphs are commonly used in planning to help com-
pute heuristic “distance” estimates between states and goals.
A few authors have also attempted to use plan graphs in
probabilistic planning to compute estimates of the proba-
bility that propositions can be achieved and actions can be
performed (Blum & Langford 1999; Little, Aberdeen, &
Thiébaux 2005). This information can then be used to help
guide a probabilistic planner towards the most effective ac-
tions for maximizing probability or for achieving the goals
with a given probability threshold.

Typically, probability information is given for the propo-
sitions in the initial state and is propagated forward through
the plan graph, in a manner similar to the propagation of cost
and resource estimates in classical planning. The probability
of being able to perform an action is taken to be the prob-
ability that its preconditions can be achieved, which is usu-
ally approximated as the product of the probabilities of the
preconditions. The probability of a particular action effect
is taken as the product of the action probability and prob-
ability of the effect given the action. Finally, the probabil-
ity of achieving a proposition at the next level of the plan
graph is then taken to be either the sum or maximum of the
probabilities for the different effects yielding that proposi-
tion. As an example, consider one level of a plan graph
shown in Figure 1 where we have two actionsa andb each
with two preconditions and two unconditional effects. As
in IPP (Koehleret al. 1997) and (Bryce, Kambhampati,
& Smith 2006a; 2006b), we have explicitly included an ef-
fect layer in between each action layer and the proposition
layer at the next level. Suppose that the probabilities for the
propositionsp, q, andr are .8, .5, and .4 as shown in the
figure. The probability that actiona is possible would then
be the probability of the conjunctionp ∧ q which would be
.8(.5) = .4. Similarly, the probability for actionb would be
.5(.4) = .2. Actiona produces effecte with certainty (prob-
ability 1), soe simply inherits the probability of.4 from a.
Action a produces effectf with probability .5, so the prob-
ability of this effect is.4(.5) = .2. In similar fashion, the
probabilities of the effectsg andh for actionb are .2 and
.2(.5) = .1 respectively. At the next level, the propositions
s andu only have one contributing effect, so they just in-
herit the probabilities of those effects. However, the propo-
sition t has two contributing effects, and we could develop a
plan that uses them both to increase the chances of achiev-
ing t. Assuming that the effectsf andg are independent we
could compute the probability of the disjunctionf ∨ g as
.2 + .2− .2(.2) = .36.

The problem with these simple estimates is that they as-
sume independence between all pairs of propositions and all
pairs of actions in the plan graph. This is frequently a very
bad assumption. If two propositions are produced by the
same action (e.g.s andt), they are not independent of each
other, and computing the probability of the conjunction by
taking the product of the individual probabilities can result
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Figure 1: A plan graph level with simple probability calcu-
lations made using the independence assumption.

in a significant underestimate. Conversely, if two proposi-
tions are mutually exclusive, then the probability of achiev-
ing them both is zero, and the product of their probabilities
will be a significant overestimate. In our example, we first
assumed that the propositionsp, q andr were independent
of each other when computing the probabilities of actions
a and b. Even if this is so, we then proceeded to assume
that effectsf andg were independent, when computing the
probability of propositiont. Clearly this is wrong, sincea
andb share a precondition.

One obvious way to improve the estimation process
would be to propagate and use mutual exclusion informa-
tion, and assign a probability of zero to actions with mutex
preconditions at a given level. However, this only helps with
the extreme case where propositions or actions are mutex.
It does not help with cases of synergy, or with cases where
propositions are not strictly mutex, but it is much “harder”
(less probable) to achieve them both.

To attempt to address this problem, we introduce a more
general notion which we callinteractionto capture both pos-
itive and negative interactions between pairs of propositions,
pairs of actions, and pairs of action effects. In the section
that follows, we first give a formal definition of our notion
of interaction. We then show how to compute and use inter-
action information within a plan graph to get better proba-
bility estimates. Finally we show some preliminary results,
and compare this technique with another recent technique
developed by Bryce, Kambhampati, & Smith (2006b).

Definitions and Representation
Action Representation
Following the representation used in (Bryce, Kambhampati,
& Smith 2006b), an actiona is taken to have:

• an enabling precondition, Pre(a)
• a set of probabilistically weighted outcomes,Φi(a)
The enabling precondition Pre(a) is a conjunction of liter-
als, just as for an action in probabilistic PDDL (PPDDL)
(Youneset al. 2005; Younes & Littman 2004) or an ordi-
nary classical action in PDDL (McDermott 1998). Each out-
comeΦi(a) has a weightwi(a) giving the probability that

the outcome is realized, andΦi(a) consists of a conjunction
of conditional effectsφij(a) of the form:

ρij → εij

where bothρij and εij are conjunctions of literals. Of
course,ρij may be empty, in which caseεij is an uncondi-
tional effect. This representation of effects follows the 1ND
normal form presented in (Rintanen 2003). The represen-
tation in PPDDL (Youneset al. 2005; Younes & Littman
2004) is a bit more general since it allows arbitrary nesting
of conditional effects and probabilistic outcomes. We have
chosen to use the 1ND normal form here because it is a bit
easier to work with, and PPDDL can be expanded into this
form.

Probability
Before going any further, we need to be clear about what
we mean by probabilities attached to propositions and ac-
tions in a plan graph. A plan graph provides an optimistic
assessment of what propositions and actions are possible. A
probability attached to a proposition or action in a plan graph
is therefore an indication of the probability that the propo-
sition or action is possible, not the probability that it is true
or has actually happened. As such, this probability implic-
itly refers to some plan. In other words, when we say that
Pr(p) = .2 for some proposition in a plan graph we mean
thatPr(p) would be .2 if we executed some particular plan
for achievingp – namely thebestpossible plan for achieving
p. More precisely, ifp is at levelk in a plan graph, byPr(p)
we mean:

max
k-level plansP

Pr(p|P) (1)

Similarly, when we refer to the probability of an actiona
at levelk in a plan graph, we mean the probability that the
action is possible given the best possible plan for achieving
its preconditions:

max
k-level plansP

Pr(Pre(a)|P) (2)

Of course we can’t possibly compute these probabilities
exactly without generating all possible plans for the propo-
sitionp or action preconditions Pre(a). Instead, we are sim-
ply trying to estimate these probabilities, and are prepared
to make assumptions in order to do so. As we noted in the
introduction, a common assumption is to suppose that the
probability estimates for different propositions are indepen-
dent of each other, but this assumption often leads to poor
estimates.

Interaction
Formally, we define the interaction between two proposi-
tions, two actions, or two effectsx andy as:

I(x, y) ≡ Pr(x ∧ y)
Pr(x) Pr(y)

(3)

which by Bayes Rule can also be seen as:

=
Pr(x|y)
Pr(x)

=
Pr(y|x)
Pr(y)

2



Interaction is a continuous quantity that can range from zero
to plus infinity. Essentially, it measures how much more or
less probable it is that we can establishx andy together as
opposed to if we could establish them independently. It has
the following characteristics:

I(x, y) = 0 if x andy are mutex
= 1 if x andy are independent
= 1

Pr(x) = 1
Pr(y) if x andy are completely

synergistic1

More generally,0 < I(x, y) < 1 means that there is some
interference between the best plans for achievingx andy
so it is harder (less probable) to achieve them both than
to achieve them independently. Similarly,1 < I(x, y) <
1/ Pr(x) means that there is some amount of synergy be-
tween plans for achievingx and y, so it is easier (more
probable) to achieve them both than to achieve them inde-
pendently.

Instead of computing and keeping mutex information in
the plan graph, we will compute interaction information be-
tween all pairs of propositions and all pairs of actions at
each level. It is worthwhile noting that for a pair of propo-
sitions or actionsx and y we could instead choose to di-
rectly store the probabilityPr(x ∧ y), or either of the two
conditional probabilitiesPr(x|y) or Pr(y|x) instead of the
interactionI(x, y). This is because these quantities are es-
sentially equivalent - from our definition of interaction and
Bayes Rule any of these quantities can be computed from
any other. We have chosen to introduce the notion of inter-
action and store this quantity because:

1. it is symmetric, unlike the conditional values.

2. we only need to store it for cases where it is not one - i.e.
the propositions/actions are not independent.

3. it can be easily interpreted and understood in terms of the
intuitive concepts of mutex, independence, and synergy.

Computing Probability and Interaction
To compute probability and interaction information in a plan
graph, we begin at the initial state (level 0) and propagate
information forward through the plan graph to subsequent
levels (just as with construction and propagation in ordinary
classical plan graphs). In the subsections that follow, we
give the details of how to do this beginning with the initial
proposition layer and working forward to actions, then ef-
fects, and finally to the next proposition layer.

Computing Action Probabilities
Suppose that we have the probabilities and interaction infor-
mation for propositions at a given level of the plan graph.
How do we use this information to compute probabilities
and interaction information for the subsequent action layer?
First consider an individual actiona with preconditions
{x1, . . . , xn}. The probability that the action can be ex-
ecuted is the probability that all the preconditions can be

1x cannot occur withouty, and vice versa, which means that
their probabilities must be the same.

achieved:

Pr(a) = Pr(x1 ∧ . . . ∧ xn)
= Pr(x1) Pr(x2|x1) . . .Pr(xn|x1 . . . xn−1) (4)

If the propositionsxi are all independent this is just the
usual product of the individual probabilities of the precondi-
tions. However, if they are not independent then we need the
conditional probabilities,Pr(xi|x1 . . . xi−1). Since we have
pairwise interaction information we can readily compute the
first of these terms:

Pr(x2|x1) = I(x1, x2) Pr(x2)

However, to compute the higher order terms (i.e.i > 2) we
must make an approximation. Applying Bayes Rule we get:

Pr(xi|x1 . . . xi−1) =
Pr(x1 ∧ . . . ∧ xi−1|xi) Pr(xi)

Pr(x1 ∧ . . . ∧ xi−1)
If we make the assumption thatx1 . . . xi−1 are independent
for purposes of this computation we get:

Pr(xi|x1 . . . xi−1) =
Pr(x1|xi) . . .Pr(xi−1|xi) Pr(xi)

Pr(x1) . . .Pr(xi−1)
Applying our analogue of Bayes Rule againi− 1 times, we
get:

Pr(xi|x1 . . . xi−1) = Pr(xi)
Pr(xi|x1)
Pr(xi)

· · ·Pr(xi|xi−1)
Pr(xi)

= Pr(xi)I(xi, x1) . . . I(xi, xi−1)

= Pr(xi)
∏

j=1...i−1

I(xi, xj)

Returning to the calculation of:

Pr(a) = Pr(x1 ∧ . . . ∧ xn)
= Pr(x1) Pr(x2|x1) . . .Pr(xn|x1 . . . xn − 1)

if we plug in the above expression for thePr(xi|x1 . . . xi−1)
we get

Pr(a) = Pr(x1 ∧ . . . ∧ xn)

=
∏

i=1...n

Pr(xi)
∏

j=1...i−1

I(xi, xj)

 (5)

Several properties of this approximation are worth noting:

1. the above expression is easy to compute and does not de-
pend on the order of the propositions.

2. If thexi are independent, theI(xi, xj) are1 and the above
simplifies to the product of the individual probabilities.

3. If any xi andxj are mutex thenI(xi, xj) = 0 and the
above expression becomes zero. If theI(xi, xj) are posi-
tive but less than one then the probability of the conjunc-
tion is less than the product of the probabilities of the in-
dividual elements.

4. If the I(xi, xj) are greater than one, there is synergy be-
tween the conjuncts. The probability of the conjunction
is greater than the product of the probabilities of the in-
dividual conjuncts, but less than or equal to the minimum
of those probabilities.
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While these properties are certainly desirable, and match
our intuitions, it is reasonable to ask how good the approxi-
mation in Equation 5 is in other cases. As it turns out, for a
conjunction withn terms, Equation 5 turns out to be exact if
only aboutn of the possiblen2 I(xi, xj) are not equal to 1.
More precisely:

Theorem 1 Consider the undirected graph consisting of a
node for each conjunctxi, and an edge betweenxi andxj

wheneverxi and xj are not independent (I(xi, xj) is not
equal to 1). If this graph has no cycles, then Equation 5 is
exact.

As an example, consider the simple case of:

Pr(a ∧ b ∧ c) = Pr(a) Pr(b|a) Pr(c|ba)

Our graph consists of the three nodesa, b andc, and zero to
three edges depending on theC ’s. If b andc are independent,
there are only two edges in the graph, and no cycle, so the
theorem states that Equation 5 is exact. To see this, withb
andc independent the above expansion becomes:

Pr(a ∧ b ∧ c) = Pr(a) Pr(b|a) Pr(c|a)
= Pr(a) Pr(b)I(a, b) Pr(c)I(a, c)

Which is the approximation in Equation 5, sinceI(b, c) = 1
More generally, the proof of this theorem relies on the fact

that a graph without cycles can be represented as a tree:

Proof: Suppose we have a conjunctionx1 ∧ . . . ∧ xn that
obeys the conditions of the theorem. Since the graph has no
cycles, it can be arranged as a tree. Without loss of gener-
ality, assume the conjuncts are in the same order as a depth
first traversal of that tree.

In general, we know that:

Pr(x1 ∧ . . . ∧ xn) =
∏

i=1,...,n

Pr(xi|x1 . . . xi−1)

But since the conjuncts are ordered according to a depth first
traversal of the tree, each conjunctxi has only one predeces-
sorxj = xpar(i) (its parent in the tree) for whichI(xi, xj)
is not one. As a result,:

Pr(xi|x1 . . . xi−1) = Pr(xi|xpar(i))
= Pr(xi)I(xi|xpar(i))

This means that:

Pr(x1 ∧ . . . ∧ xn) =
∏

i=1,...,n

Pr(xi)I(xi, xpar(i))

But sinceI(xi, xj) = 1 for all j < i andj 6= par(i) there is
no harm in adding these terms and we get:

Pr(a) = Pr(x1 ∧ . . . ∧ xn)

=
∏

i=1...n

Pr(xi)
∏

j=1...i−1

I(xi, xj)


which is Equation 5.

Computing Interaction Between Actions
As with propositions, the probability that we can execute
two actions,a andb, may be more or less than the product
of their individual probabilities. If the actions are mutually
exclusive (in the classical sense) then the probability that we
can execute them both is zero. Otherwise, it is the probabil-
ity that we can establish the union of the preconditions for
the two actions.

Pr(a ∧ b) = 0 a andb mutex
= Pr (

∧
(Pre(a) ∪ Pre(b))) otherwise

Using Equation 5 we can compute the probability of the con-
junction Pr (

∧
(Pre(a) ∪ Pre(b))). By our definition of in-

teraction, Equation 3, we can then compute the interaction
between two actionsa andb.

As an example, consider the plan graph in Figure 1 again.

Pr(a ∧ b) = Pr
(∧

(Pre(a) ∪ Pre(b))
)

= Pr(p ∧ q ∧ r)
= Pr(p) Pr(q) Pr(r)I(p, q)I(q, r)I(p, r)
= .8(.5)(.4) = .16

assuming that the interactions between the preconditions are
all one. The interaction betweena andb is therefore:

I(a, b) =
Pr(a ∧ b)

Pr(a) Pr(b)
=

.16
.4(.2)

= 2

Computing Effect Probabilities and Interaction
Given the tools we have developed so far, it is relatively
straightforward to compute the probability of an individual
action effect. LetΦi be an outcome of actiona with weight
wi, and letφij = ρij → εij be a conditional effect inΦi.
If the effect is unconditional – that is the antecedentρij is
empty – then:

Pr(εij) = wi Pr(a)

However, if the antecedentρij is not empty, there is the pos-
sibility of interaction (positive or negative) between the pre-
conditions ofa and the antecedentρij . As a result, to do the
computation right we have to compute the probability of the
conjunction of the preconditions and the antecedent:

Pr(εij) = wi Pr
(∧

(Pre(a) ∪ ρij)
)

For convenience, we will refer to the weightwi associ-
ated with an effectεij asw(εij). We will also refer to the
union of the action preconditions and the antecedentρij for
an effectεij as simply thecondition of εij and denote it
Cond(εij). For an effectε, the above expression then be-
comes simply:

Pr(ε) = w(ε) Pr
(∧

Cond(ε))
)

As with actions, we can compute the probability of the con-
junction of Cond(ε) using the approximation in Equation 5.

We can also compute the interaction between two differ-
ent effects just as we did with actions. For two effects,e and
f we have:

Pr(e ∧ f) = w(e)w(f) Pr
(∧

Cond(e) ∪ Cond(f)
)
(6)
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As before, the probability of the conjunction of Cond(e) ∪
Cond(f) using the approximation in Equation 5. By our
definition of interaction, Equation 3, we can then compute
the interaction between the two effectse andf .

As an example, consider the two unconditional effectse
andh from Figure 1. Since both these effects are uncondi-
tional, Cond(e) and Cond(h) are just the preconditions ofa
andb respectively. As a result:

Pr(e ∧ h) = w(e)w(h) Pr
(∧

Cond(e) ∪ Cond(h)
)

= w(e)w(h) Pr(p ∧ q ∧ r)
= 1(.5)(.8)(.5)(.4)
= .08

sincep, q andr were assumed to be independent. Using this,
we get:

I(e, h) =
Pr(e ∧ h)

Pr(e) Pr(h)
=

.08
.4(.1)

= 2

Intuitively, the fact thatI(e, h) > 1) means that there is
some degree of synergy between the effectse andh. In other
words, establishing them both is not as hard as might be
expected from their individual probabilities. This is because
the actions for achieving them share a precondition.

Note that Equation 6 forPr(e ∧ f) applies whether the
effectse andf are from the same or different actions. In
the case where they are effects of the same action, there will
be overlap of the action preconditions between Cond(e) and
Cond(f). However, the antecedents of the conditional ef-
fects may be quite different, and there can be interaction
(positive or negative) between literals in those antecedents,
which will be captured by the probability calculation in
Equation 6.

Computing Proposition Probabilities
Computing the probability for a proposition is complicated
by the fact that there may be many actions with effects that
produce the proposition, and we are not limited to using only
one such action or effect. For example, if two action effects
e andf both produce propositionp with probability .5, then
we may be able to increase our chances of achievingp by
performing both of them. However, whether or not this is
a good idea depends upon the interaction between the two
effects. If the effects are independent or synergistic, then
it is advantageous. If the two effects are completely mu-
tex (I(e, f) = 0), then it is not a good idea. If there is
some degree of mutual exclusion between the actions (i.e.
0 < I(e, f) < 1) then the decision depends on the specific
probability and interaction numbers.

Suppose we choose a particular set of effectsE =
{e1, . . . , ek} that produce a particular propositionp. Intu-
itively, it would seem that the probability that one of these
effects would yieldp is:

Pr(e1 ∨ . . . ∨ ek)

Unfortunately, this isn’t quite right. By choosing a particular
set of effects to try to achievep, we are committing to (try-
ing to) establish the conditions for all of those effects, which

means establishing both the action preconditions and the an-
tecedents of each of the conditional effects. There may be
interaction between those conditions (positive or negative)
that increases or decreases our chances for each of the ef-
fects. The above expression essentially assumes that all of
the effects are independent of each other.

In this case, the correct expression forPr(p) using a set
of effectsE is both complicated and difficult to compute.
Essentially we have to consider the probability table of all
possible assignments to the conditions for the effectsE, and
multiply the probability of each assignment by the probabil-
ity that the effects enabled by that assignment will produce
p. Let T (E) be the set of all possible2|Cond(E)| truth as-
signments to the conditions in Cond(E). Formally we get:

Pr(pE) =
∑

τ∈T (E)

Pr(τ) Pr(p|τ) (7)

wherePr(pE) refers to the probability ofp given that we are
using the effectsE to achievep.

As an example, consider the calculation of the probability
for the propositiont in Figure 1 assuming that we are using
the two unconditional effectsf andg from actionsa andb.
The set of conditions for these effects is just the union of the
preconditions fora andb which is{p, q, r}. There are eight
possible truth assignments to this set, but only three of them
permit at least one of the actions:

p ∧ q ∧ ¬r permitsf but notg

¬p ∧ q ∧ r permitsg but notf

p ∧ q ∧ r permits bothf andg

The probabilities for these truth assignments are:

Pr(p ∧ q ∧ ¬r) = .8(.5)(.6) = .24
Pr(¬p ∧ q ∧ r) = .2(.5)(.4) = .04

Pr(p ∧ q ∧ r) = .8(.5)(.4) = .16
The probability fort using both actions is therefore:

Pr(t) = .24(.5) + .04(1) + .16(.5 + 1− .5(1)) = .32
This calculation was fairly simple because we were only

dealing with three propositionsp, q and r and they were
independent. More generally, however, an expression like
Pr(p ∧ q ∧ ¬r) is problematic whenr is not independent of
the other two propositions, since we do not have interaction
information for the negated proposition. There are a number
of approximations that one can use to compute such proba-
bilities. For our purposes, we assume that two propositions
are independent if interaction information is not available.
Thus, in this case we make the assumption that:

Pr(p ∧ q ∧ ¬r) = Pr(p ∧ q) Pr(¬r)
We now return to the problem of computing the proba-

bility for a propositionp. In theory we could consider each
possible subsetE′ of effectsE that match the propositionp
and compute the maximum:

max
E′⊆E

Pr(pE′) (8)

and use Equation 7 to expand and computePr(pE′). Un-
fortunately, when there are many effects that can produce a
proposition this maximization is likely to be quite expensive,
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because 1) we would need to consider all possible subsets of
the set of effects, and 2) in Equation 7 we would have to
consider all possible truth assignments to the conditions for
each set of effects. As a result, some approximation is in
order. One possibility is a greedy approach that adds effects
one at a time, as long as they still increase the probability.
More precisely:

1. LetE be the set of effects matchingp

2. letE0 be the empty set of effects, letP0 = 0
3. lete be an effect inE not already inEi−1, and letP ∗ =

Pr(pe∪Ei−1). If

e maximizesP ∗

and
P ∗ > Pi−1

then set
Ei = e ∪ Ei−1

Pi = P ∗

Using this procedure the final setPi will be a lower bound
on:

max
E′⊆E

Pr(pE′)

Even this approximation is somewhat expensive to com-
pute, because it requires repeated computation ofPr(pE′)
at each stage using equation 7. A different approximation
that avoids much of this computation is to construct all max-
imal subsetsE′ of the effects inE such that there is no pair
of effectse andf in E′ with I(e, f) < 1 (no interference).
We then compute or estimatePr(pE′) for each such subset
and choose the maximum. This approximation has the ad-
vantage that we must only calculatePr(pE′) for a relatively
small number of sets.

Computing Interaction Between Propositions
Finally, we consider the probability for a pair of proposi-
tionsp andq which will allow us to compute the interaction
between the propositions. As with a single proposition, this
calculation is complicated because we want to find the best
possible set of effects for establishing the conjunction. If we
let E be the set of effects matching propositionp, andF be
the set of effects matching propositionq, then what we are
after is:

Pr(p ∧ q) = max
E′⊆E

F ′⊆F

Pr(pE′ ∧ qF ′) (9)

In order to computePr(pE′ ∧ qF ′ we must again resort to
considering all possible truth assignments for the union of
the conditions forE′ andF ′ as we did in Equation 7:

Pr(pE′ ∧ qF ′) =
∑

τ∈T (E′∪F ′)

Pr(τ) Pr(p ∧ q|τ) (10)

Returning to our example, consider the calculation of the
probability for the pair of propositionss andt in Figure 1.
Propositions has only one supporting effecte, butt has two
supporting effects. For illustration, assume that we are using
both the effectsf andg in order to increase the probability
of t. The set of conditions for all three effects{e, f, g} is just
the union of the preconditions fora andb which is{p, q, r}.

Again there are eight possible truth assignments to this set,
but only two of them permit the effecte:

p ∧ q ∧ ¬r permitse andf but notg

p ∧ q ∧ r permitse, f , andg

As before, the probabilities for these truth assignments are:

Pr(p ∧ q ∧ ¬r) = .8(.5)(.6) = .24
Pr(p ∧ q ∧ r) = .8(.5)(.4) = .16

The probability fors andt using effectse, f , andg is there-
fore:

Pr(g) = .24(.5) + .16(.5 + 1− .5(1)) = .28

For our example, the maximization in equation 9 is trivial
because the effectsf and g do not interfere. As a result,
using both will yield higher probability and we get the final
result thatPr(s ∧ t) = .28

More generally this maximization could be costly to com-
pute, since it involves computing a complex expression for
all subsets of effects inE and F . To approximate this,
we could use either the greedy strategy developed in the
previous section, or the strategy of finding maximal non-
interfering effect subsets.

GivenPr(s∧t) and the individual probabilitiesPr(s) and
Pr(t) we can computeI(s, t) from the definition in Equa-
tion 3. For our example, we get

I(a, b) =
Pr(s ∧ t)

Pr(s) Pr(t)
=

.28
.4(.36)

≈ 2.19

Thus we see that there is synergy betweens andt, as we
would expect, since actiona can produce them both.

Using Probability Estimates
Probability estimates in a plan graph can be useful for guid-
ing both progression and regression planners. Consider a
regression planner, such as that discussed in (Bryce, Kamb-
hampati, & Smith 2006a). Such a planner works backwards
from the goals. At any given stage there is a partial plan
(plan suffix) along with a set of open conditions that still
need to be achieved. Using the plan graph probability and in-
teraction estimates, the planner can estimate the probability
of achieving the conjunction of the open conditions. Given
the current plan suffix the planner can then compute an esti-
mate of the probability that the goals will be achieved. If that
probability is too low, the planner can abandon the candidate
plan and pursue others that appear more promising.

Once the planner has chosen to pursue a candidate plan,
it must then choose the open condition to work on. Here
the probability estimates can guide the planner to work on
the most difficult open condition. Once the open condition
is chosen, probability estimates are useful for guiding the
planner towards the best set of actions for achieving the open
condition.

For a progression planner probability estimates can be
used in a similar fashion: 1) to estimate the probability that
a given state will lead to the goals, and 2) to choose the ac-
tion most likely to lead to the goals. The disadvantage in
progression is that one must recompute (or update) the plan-
ning graph for each newly generated state.

6



A number of current planning systems compute relaxed
plans, and use these as distance estimates to guide planning
search. In this case, the probability estimates we have devel-
oped are useful for extracting better relaxed plans. Basically,
the probability estimates are used in the same way as in re-
gression search, to help choose the most appropriate actions
in the greedy construction of the relaxed plan. This is the
approach we have taken in our preliminary implementation.

Results
We have developed a preliminary implementation of the
technique presented above. Interaction and probability in-
formation is computed using the above methods. This in-
formation is then used to guide construction of a relaxed
plan, which is used to guide the POND heuristic search
planner (Bryce, Kambhampati, & Smith 2006a) in a man-
ner similar to that described in (Bryce, Kambhampati, &
Smith 2006b). The planner is implemented in C and uses
several existing technologies. It employs the PPDDL parser
(Younes & Littman 2004) for input, and the IPP planning
graph construction code (Koehleret al. 1997). Because the
implementation and debugging is still not complete, we have
so far only tested the ideas on the small domains Sandcastle-
67 and Slippery gripper. Figures 2 and 3 show some early
results for time, plan length, and node expansion for the
sandcastle-67 and slippery Gripper domains respectively.
The plots compare 4 different planners:

• CPlan (Hyafil & Bacchus 2004)

• McLug-16 (Bryce, Kambhampati, & Smith 2006b), the
POND planner using Monte Carlo Simulation on plan
graphs

• pr-rp, relaxed plan construction using simple plan graph
probability information computed using independence as-
sumptions

• int-rp, relaxed plan construction using probability and in-
teraction information.

The other two entries (pr-rp-mx and corr-rp-mx) represent
variants that are not fully debugged and should therefore be
regarded as suspect.

Generally, performance of the four methods is similar on
these simple domains. Plans are somewhat longer for pr-
rp and corr-rp because the objective for these planners is to
maximize probability rather than minimize the number of
actions. There is some indication that corr-rp is showing
less growth in time and number of node expansions as the
probability threshold becomes high, but additional experi-
ments are needed to confirm this and examine this behavior
more closely.

Related Work
A number of authors have made use of plan graphs to try
to speed up probabilistic planning. Boutilier, Brafman and
Geib 1998 examine the impact of reachability analysis and
n-ary mutex relationships on the size of the state space for
MDPs. PGraphplan (Blum & Langford 1999) also makes
use of a plan graph in probabilistic planning, primarily for

the purpose of reachability analysis. In recent work, Lit-
tle and Thiebaux (Little & Thíebaux 2006) also use a plan
graph for reachability analysis, but introduce more powerful
mutual exclusion reasoning for handling concurrent proba-
bilistic planning problems. Probapop (Onder, Whelan, &
Li 2006) uses a relaxed planing graph to compute distance
estimates and guide a partial order planner in solving con-
formant probabilistic planning problems. None of these sys-
tems attempt to compute probability estimates in a planning
graph.

Prottle (Little, Aberdeen, & Thíebaux 2005) computes
lower bound probability estimates of reaching the goal from
a given state by back-propagating probability on the plan
graph. Given a progression search state, Prottle identifies the
relevant propositions in the plan graph and takes the product
of their back-propagated probabilities. In taking the prod-
uct of the probabilities, Prottle assumes full independence
between subgoals, leading to a weak lower bound on goal
probability. In comparison with our technique, we propa-
gate probability forward using interaction instead of assum-
ing full independence.

Discussion and Conclusions
We have introduced a continuous generalization of the no-
tion of mutex, which we callinteraction. We showed how
such a notion could be used to improve the computation of
probability estimates within a plan graph. Our implementa-
tion of this technique is still preliminary and it is much too
early to draw any significant conclusions about the practi-
cality or efficacy of these computations for problems of any
size. In addition to finishing our implementation and doing
more significant testing, there are a number of issues that we
wish to explore:

Interaction vs Relaxed Plans The approach of keeping
interaction information is different from the method of us-
ing a relaxed plan to estimate probability in an important
way: relaxed plans are constructed greedily, so a relaxed
plan to achievep ∧ q would normally choose the best way
to achievep and the best way to achieveq independently.
This will not always lead to the best plan for achieving the
conjunction. Interaction information can be used to guide
(relaxed) plan selection and would presumably give better
relaxed plans. This is the approach we have taken in our pre-
liminary implementation. Of course there is always a trade-
off between heuristic quality and computation time, and this
is something we intend to investigate further.

Admissibility Although probability estimates computed
using interaction information should be more informative,
they are not admissible. The primary reason for this is that
keeping only binary interaction information, and approxi-
mating the probability of a conjunction using only binary
interaction information can both underestimate and overesti-
mate the probability of the conjunction. Note, however, that
the usual approach of estimating probability by assuming in-
dependence is also not admissible for the same reason. Sim-
ilarly, relaxed plans do not provide an admissible heuristic -
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Figure 2:Run times (s), Plan lengths, and Expanded Nodes vs. probability threshold for sandcastle-67
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Figure 3:Run times (s), Plan lengths, and Expanded Nodes vs. probability threshold for slippery gripper

they can underestimate probability because the relaxed plan
may not take full advantage of synergy between actions in
the domain. It is possible to construct an admissible heuris-
tic for probability by taking:

• the probability of a conjunction to be the minimum prob-
ability of the conjuncts,

• the probability of a proposition as the sum of all the prob-
abilities of the producing effects.

However, this heuristic is very weak and not likely to be
very effective. It is not yet clear whether we can construct a
stronger admissible heuristic using interaction.

Interaction in the Initial State The mechanism we have
described easily admits the use of interaction information
between propositions in the initial state. That information
would be treated in the same was as at any other level in
the plan graph. Thus, if the initial state hasPr(p ∧ q) =
.5 and Pr(¬p ∧ ¬q) = .5 we could represent this as
Pr(p) = Pr(q) = Pr(¬p) = Pr(¬q) = .5 andI(p, q) =
I(¬p,¬q) = .5

.5.5 = 2. The limitation of this approach is
that binary interaction can only approximate joint probabil-
ity information for conjunctions larger than two.

Bayesian Networks There are a number of similarities be-
tween techniques we have used here, and methods used in
Bayesian Networks. We speculate that the calculation of
probability information for individual actions and pairs of
actions could be modeled using a simple Bayes net with

nodes for the preconditions and actions, arcs between the
preconditions and corresponding actions and arcs between
pairs of preconditions that are dependent (interaction not
equal to one). These later arcs would be labeled with the
conditional probability corresponding to the interaction. It
would be necessary to structure the network carefully to
avoid cycles among the preconditions. The more complex
calculations for propositions would require influence dia-
grams with choice nodes for each of the establishing effects.
There doesn’t seem to be any particular advantage to doing
this, however. Solution of this influence diagram would re-
quire investigating all possible sets of the decisions, which
corresponds to the unwieldy maximization over all subsets
of establishing effects. It also seems unlikely that approxi-
mate techniques for solving influence diagrams would help
- they would still likely require the investigation of all possi-
ble action choices, and would produce an approximate joint
probability distribution. Instead, the approach that we take
does not attempt to compute this joint probability distribu-
tion, and works on one Plan Graph level at a time.

Cost Computation in Classical Planning The idea that
we have explored here – a continuous generalization of mu-
tex – is not strictly limited to probabilistic planning. A sim-
ilar notion of the “interaction” between two proposiitons or
two actions could be used in classical planning to improve
plan graph estimates of cost or resource usage. To do this
we could define “interaction” as:

I(x, y) = Cost(x ∧ y)− (Cost(x) + Cost(y))
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= Cost(y|x)− Cost(y)
= Cost(x|y)− Cost(x)

For this definition, positive interaction means that there is
some conflict between two propositions, actions or effects,
and that it is more expensive to achieve the conjunction than
to achieve them separately. An interaction of plus infinity
corresponds to mutex. Negative interaction corresponds to
synergy between the propositions, meaning that achieving
them together is easier than achieving them independently.
An interaction of zero corresponds to independence. Essen-
tially, this can be seen as the negative logarithm of the defi-
nition for probabilistic interaction given in Equation 3.

The computation of cost interaction for actions, effects
and propositions is very similar to what we have described
above. The primary difference is that the computations for
propositions are significantly simpler because there is no
need to maximize over all subsets of possible effects that
give rise to a proposition. Although we have worked out the
equations and propagation rules for this notion of interac-
tion, we have not yet implemented or tested this idea. We
intend to investigate this in the near future.
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