
CHAP-E: A Plan Execution Assistant for Pilots

J. Benton and David Smith and John Kaneshige and Leslie Keely

NASA Ames Research Center
Moffet Field, California 94035-1000

{j.benton,david.smith,john.t.kaneshige,leslie.keely}@nasa.gov

Abstract

Pilots have benefited from ever-increasing and evolving au-
tomation techniques for many decades. This automation has
allowed pilots to handle increasingly complex aircraft with
greater safety, precision, and reduced workload. Unfortu-
nately, it can also lead to misunderstandings and loss of situ-
ational awareness. In the face of malfunctions or unexpected
events, pilots sometimes have an unclear picture of the sit-
uation and what to do next, or must find and follow writ-
ten procedures that do not take into account all the details
of the particular situation. Pilots may also incorrectly as-
sume the mode or state of an automated system and fail to
perform certain necessary actions that they assumed an auto-
mated system would handle. To help alleviate these issues,
we introduce the Cockpit Hierarchical Activity Planning and
Execution (CHAP-E) system. CHAP-E provides pilots with
guidance toward executing procedures based on the aircraft
and automation system’s state and assists pilots through both
nominal and off-nominal flight situations.

Introduction
Piloting aircraft requires handling input from a variety of
systems, including instruments that inform a pilot of the
aircraft’s state (e.g., airspeed, vertical speed, altitude, atti-
tude, and heading). While automation has a long history of
assisting pilots with handling this information, when mal-
functions occur, sometimes multiple messages come from
distinct systems, confusing a pilot and making it difficult
to understand the next best course of action. A sad exam-
ple of this occurred during the Air France 447 flight, which
crashed, killing all passengers and crew. Coming from Rio
de Janeiro, Brazil and going to Paris, France, the flight en-
tered a large area of thunderstorm activity that resulted in
both turbulence and ice crystals forming in the pitot tubes,
which measure airspeed. Though the anti-ice system came
on and a warning sounded, the pitot tubes iced over and no
longer provided correct airspeed, causing the autopilot and
auto-thrust systems to disengage. The aircraft began to roll
from the turbulence, and the pilot overcompensated because
the aircraft was now in a control mode that was more sensi-
tive to roll input. Through a series of often disparate warn-
ings and incorrect assumptions that followed (including stall
warnings and presumed assumptions that the aircraft’s au-

topilot would not allow a high angle of attack)1, the aircraft
stalled at 38000 feet, plunging into the ocean three and a half
minutes later.

This tragic incident serves as an illustrative example of
how messages from disparate systems, unclear procedures,
and lack of basic data regarding the aircraft’s automation
state can cause serious issues for pilots and their flights. Nu-
merous other examples exist, including American Airlines
268 and Turkish Airways 1951. Indeed, 55% of all major in-
cidents are due to system malfunctions, and a primary reason
those contributed to bad outcomes related to pilots’ inabil-
ity to accurately assess the nature of the failure (FAA 2013).
Our objective is to help flight crews by providing a global
picture of expected procedures given the aircraft state. To-
ward these ends, we seek to provide pilots with procedural
guidance during flight, keeping track of the aircraft state and
providing suggested procedures for pilots to follow.

More specifically, we are interested in the problem of real-
time monitoring of all phases of airliner flight, and providing
feedback to the pilots when actions are overlooked or are in-
appropriate, or when the conditions of flight are no longer
in accordance with the objectives or clearance.2 Tradition-
ally, pilots have made use of written or electronic checklists
to verify that appropriate actions have been performed and
that the aircraft reached the proper state for each particu-
lar phase of flight. While these have served to standardize
procedures and ensure that critical items have not been over-
looked, checklists are both static and passive. For example,
the pre-landing checklist confirms that the flaps are at the
landing setting, the landing gear is down, the airspeed is in
an appropriate range for the landing weight, the approach is
stabilized, and the autobrakes are armed. It does not tell the
pilots when to lower flaps, when to lower landing gear, what
modes and settings to select for the autopilot, or whether
the selected landing speed and flap settings are even appro-
priate for the runway length, wind conditions, and current
runway braking action. In other words, the checklist helps
confirm the state of the aircraft, but provides no guidance
about when or how to achieve that state. This information is

1The angle of attack is the angle between the wing and airflow.
2This includes things like speed, altitude, descent/climb rate,

autopilot mode and settings, route compliance, flap settings, fuel
state, etc.

David Smith
In ICAPS 2017 Workshop:
User Interfaces and Scheduling and Planning



all buried in the pilot’s training and expertise, and in proce-
dures in the Pilot’s Operating Handbook (POH). However,
details can get overlooked when the crew is fatigued, the
crew is overworked (e.g., due to weather conditions), or in
the event of system failures.

To tackle this problem, we introduce the Cockpit Hierar-
chical Activity Planning and Execution (CHAP-E) system,
a decision support and procedure display system. CHAP-E
can display pre-defined plans (procedures) or interface with
a situation-aware automated planner to generate and display
appropriate procedures. In this way, it can be viewed as a
planning, monitoring and execution assistant for the aircraft
flight.

This paper focuses on the CHAP-E display and its use
during flight. We designed the CHAP-E display to account
for the constant movement that occurs during flight. Unlike
some domains, during flight the state of the world changes
continuously but predictably over time, depending upon ac-
tion execution. This enables CHAP-E to determine how to
safely execute a plan. The state information includes events
such as reaching waypoints, instrument data (e.g., altitude
and air speed) and aircraft configuration (e.g., flaps and land-
ing gear positions). To predict these, CHAP-E uses an
external simulator called the Trajectory Prediction System
(TPS) (Kaneshige et al. 2014). It can use these predictions
to determine the earliest time when a pilot may begin actions
in the plan and the latest time an action can be executed for
the plan to remain successful.

We begin by discussing work related to automation during
flight and plan execution displays. We then follow with an
overview of the CHAP-E system. Finally, we end with a
discussion on future work.

Related Work
Automation systems have a long history in aviation. As
(Billings 1996) points out, making flight more resistant and
tolerant to error stands as the primary purpose of automa-
tion assistance in aviation. Despite this, little work has
been done in assisting pilots by displaying procedures to
them, ensuring their applicability during flight, and moni-
toring the execution of those procedures. Perhaps the clos-
est match to CHAP-E is MITRE’s Digital Copilot, which
is designed for smaller single-pilot aircraft and informs the
pilot of common mistakes and constraint violations during
flight (MITRE 2016).

Other work on procedure displays has been implemented
within the context of space missions. The NASA Au-
tonomous Mission Operations (AMO) project used a user
interface to track a spacecraft’s life support system activ-
ity (Frank et al. 2015). It offered recommended activities
based on the state of the spacecraft and current operating
constraints. Personnel on the spacecraft forwarded the rec-
ommendation to flight controllers, and if approved by the
flight controllers, the activity would be scheduled and dis-
played. It also used a system that helped the crew track the
progress of plan execution. That system, called WebPD, was
integrated with spacecraft systems to provide information
about the spacecraft’s state. The system then displayed serial
procedures along with important relevant state information

related to each step in the procedure (Stetson et al. 2015;
Frank et al. 2013). A similar system, called the Procedure
Integrated Development Environment (PRIDE), was imple-
mented to assist in the development of procedures. The
procedures are stored using the Procedure Representation
Language (PRL). The procedure view component, PRIDE
View, allows a user to follow a procedure step-by-step (Ko-
rtenkamp et al. 2008).

Another comparable system is RADAR (Vadlamudi et al.
2016), which assists in producing plans by generating land-
marks and offering action suggestions based upon them. Un-
like the other systems listed, RADAR uses PDDL (Fox and
Long 2003).

Plan Execution Assistant
The design of CHAP-E centers around reducing human er-
ror and its potentially negative effects by providing decision
support to human pilots. We define human error as action
or lack of action taken by a human with unintended effects.
Without knowing the intentions of a human actor, we can-
not determine whether an error has taken place. A human
must share the intention of their actions to identify an error.
This makes detecting human error a difficult, complex prob-
lem. In our current version of CHAP-E we do not expect
to identify all human errors. Instead, we assume a human
pilot never intends to cause goal failure or violate important
safety and operational constraints, which ties human intent
to pilots maintaining safe flight. Fortunately, we can focus
on negative effects assuming that a human will want to avoid
making errors that would cause potential hazards or cause
failure to achieve a given goal.

In this section, we present an overview of the CHAP-E
system currently in development, with a particular focus on
the approach and landing phases of flight. First, we discuss
the CHAP-E plan representation, then how we can deter-
mine whether a plan may succeed without violating con-
straints. Finally, we discuss the CHAP-E display and its
operation.

Plan Representation
CHAP-E uses hierarchical plans with causal links. The
primitive actions in the plan can be simulated to ensure they
do not violate important constraints. As seen in Figure 1,
in the plan hierarchy, the highest level task is a flight from
the departure airport to the destination airport, flight(from,
to). This expands into a serial (via causal links) set of sub-
tasks: hFileFlightPlan(from, to), ObtainClearance(from, to),
Taxi(rnwy) Fly(from, to), Taxi(gate), Shutdowni.3 We can
further break down the Fly(from, to) action into the phases
of flight: hTakeoff(from, rnwy), Climb, Cruise, Descend,
Approach, Land(rnwy)i. Expanding the Approach phase,
we have a set of primitive actions taken by the pilot. These
individual actions have enabling safety conditions associ-
ated with them, such as a particular segment on the ap-
proach, an airspeed range, or an altitude range.

3We simplify the example by removing some parameters and
tasks.



Figure 1: CHAP-E hierarchical plan with the approach phase expanded down to primitive actions

The hierarchical structure provides several advantages.
First, much of the expansion cannot take place initially, be-
cause some of the parameters and constraints are not yet
known. For example, we cannot always initially expand
Taxi(rnwy), because the taxi route and the runway may have
not been assigned yet. Before this expansion can take place,
the initial part of the plan must be executed – we must file
the flight plan, and obtain the taxi clearance. Similarly, the
Departure, Cruise and Descent activities of the Fly subtask
cannot be expanded until the aircraft obtains a route clear-
ance. The Approach and Landing activities usually cannot
be expanded until later in the flight when the approach and
runway are assigned by Air Traffic Control (ATC) and ac-
cepted by the pilots. This will often depend on the traffic and
weather conditions at the time of arrival. For example, the
current wind conditions usually dictate which runways are
viable, and ceiling and visibility constrain the approaches
that are possible. This necessitates interleaving the hierar-
chical expansion of the plan and the plan’s execution.

One of the challenges of representing these plans is that
many of the actions are keyed off of particular events, rather
than times. For example, a standard practice is to lower
flaps to 20 degrees and lower the landing gear just before
intercepting the glideslope (the vertical guidance for the air-
craft) on an approach. Typically, this happens just outside of
the Final Approach Fix, a designated waypoint about 5nm
(nautical miles) from the end of the runway. The trouble
is, there is some uncertainty about the exact time at which
this event will occur, since it depends on the aircraft’s exact
speed and altitude, and on the wind conditions; if the aircraft
is a bit faster than expected or a bit high, this event will occur
sooner, if the headwinds are higher than expected, this event
will occur a bit later. As a result, many of the actions in a
CHAP-E plan are triggered off of events, rather than times
or the completion of preceding actions. Frequently, these
events involve reaching a particular waypoint or distance
from a waypoint, reaching a particular altitude, or reaching

a particular airspeed.
Figure 2 shows the plan and profile views for the ILS 28R

approach into San Francisco.4 The plan view gives a map-
like picture of the approach as seen from above, with a tran-
sition to the approach starting at the waypoint ARCHI, inter-
cepting the final approach course at the waypoint DUMBA,
and continuing through the Final Approach Fix, the way-
point AXMUL, to the runway. The profile view shows a
vertical slice of the altitude profile for the final segments of
the approach.

Figure 3 shows a small fragment of a detailed plan for in-
tercepting and flying this approach, for an aircraft beginning
just east of the ARCHI waypoint. The plan contains three
types of statements: Events that are expected to occur, Ac-

tions that the pilots must perform, and Monitors, which in-
dicate conditions that must be maintained throughout some
interval. Each event is characterized by a label, followed by
the event. For example, the first event is that of crossing
the waypoint ARCHI on the transition to the approach. The
events ZILED, GIRRR, DUMBA, CEPIN, AXMUL, and
RW28R also refer to the crossing of waypoints. The next
five events are prefaced by before! conditions, which in-
dicate a hard constraint that the event must occur before an-
other event (otherwise the plan becomes invalid). The first
of these is that we must have the clearance for the approach
from ATC before crossing the ARCHI waypoint. The next
three refer to the airspeed dropping below the maximum al-
lowed value for a particular flap setting. The final two re-
fer to the autopilot capturing the localizer and glideslope –
the lateral and vertical guidance for the approach. Finally,
A1500 and A1000 refer to the events when the altitude be-
comes less than 1500 ft and 1000 ft above the runway.

Actions are much like events, but these are things the pi-
lots must do. These usually contain both hard and soft con-

4Note that waypoints follow a standard naming convention of
five all-capitalized letters.



Figure 2: Plan and profile views for the ILS 28R approach
into San Francisco

straints (preferences). For example, the first action says that
after the clearance event, and before the GIRRR waypoint
the pilots must arm the localizer in the autopilot, which al-
lows the autopilot to follow the lateral guidance. This is
a hard constraint, as indicated by the exclamation point (!)
an the end of between!. There is also a soft constraint
(preference) that this happen between ARCHI and ZILED
(no exclamation point). The second action is similar, with a
hard constraint window, and a soft constraint that the action
happen before CEPIN. The third action is also prefaced by
both hard and soft constraints and specifies a sequence of
two events: setting the flaps to 20, and setting the autopi-
lot speed window to the value Vref20. Like events, actions
can have names, and the first of this sequence is named F20,
which the subsequent action is conditioned on. The fourth
action, lowering the landing gear, has a hard constraint that it
must be performed before altitude 1500 and a soft constraint
to do it after setting the flaps to 20, and before AXMUL.
The final action sequence has a hard constraint and two soft
constraints. This is needed in this case because we do not
know, a priori, which of the events, Gear or AXMUL, will
occur first, and we prefer that the action be done after both
events have occurred.

Monitors are conditions that must hold over some period
of time. For example, the first monitor states that the air-
speed must always remain between the reference speed and
the maximum speed for the particular flap setting being used
at the time. The second and third monitors state that the lo-
calizer and glideslope must remain captured, and the final
monitor states that the flaps must remain in the landing con-
figuration. If any of these conditions are violated, the plan
becomes invalid and must be revised.

There are a couple things worth noting about this plan:
• Most actions are conditioned on events, rather than on

Events {

ARCHI: cross(ARCHI) ;

ZILED: cross(ZILED) ;

GIRRR: cross(GIRRR) ;

DUMBA: cross(DUMBA) ;

CEPIN: cross(CEPIN) ;

AXMUL: cross(AXMUL) ;

RW28R: cross(RW28R) ;

before![ARCHI] {CLR: start(Clearance = ILS28R.ARCHI)} ;

before![ARCHI] { F5max: start(IAS <= Vmax5)} ;

before![CEPIN] {F20max: start(IAS <= Vmax20)} ;

before![AXMUL] {F30max: start(IAS <= Vmax30)} ;

before![DUMBA] {LocCap: start(FMA-Lateral = LOC)} ;

before![AXMUL] {GSCap: start(FMA-Vertical = GS)} ;

A1500: start[Alt <= 1500AGL) ;

A1000: start[Alt <= 1000AGL) ;

... }

Actions {

between![CLR,GRRR] & between[ARCHI,ZILED] <<ArmLocalizer>> ;

between![LocCap,AXMUL] & before[CEPIN] <<ArmGlideslope>> ;

between![F20max,AXMUL] & between[CEPIN,GSCap]

<<F20: SetFlaps(20),SetMCPSpeed(Vref20)>> ;

before![A1500] & between[F20,AXMUL] <<Gear: SetGear(Down)>> ;

between![F30max,A1000] & after[Gear] & between[AXMUL,A1000]

<<SetFlaps(30), SetMCPSpeed(Vref30+5)>> ;

... }

Monitors {

throughout[CEDES, RW28R] {IAS in [Vref,Vmax]} ;

throughout[LocCap, RW28R] {FMA-Lateral = LOC} ;

throughout[GSCap, RW28R] {FMA-Vertical = GS} ;

throughout[F30, RW28R] {Flaps = 30} ;

... }

Figure 3: Fragment of a detailed CHAP-E plan for the ILS
28R approach into San Francisco

other actions. In many cases actions indirectly control
when these events will occur, but there is some uncer-
tainty, and it is the events that serve as constraints on when
to perform the actions.

• Traditionally, “flexible” plans have been used to help deal
with duration and time uncertainty. In a flexible plan, ac-
tions are partially ordered, and may be restricted to desig-
nated time windows. That is true here also, but the flex-
ibility is expressed in terms of events that will manifest
in terms of time windows. So, for example, the first ac-
tion specifies that the localizer should be armed after the
event where the clearance is obtained, and between the
events of crossing ARCHI and GIRRR. These events will
ultimately prescribe a time window for the action at exe-
cution time.

• Monitors are like overall conditions or durative goal con-
ditions. They specify conditions that must hold between
particular events. However, these monitors often span
several low level actions. As a result, they are associated
with (and come from) higher level tasks in the hierarchy.
In the example above, they are associated with the Ap-
proach task instantiated with the San Francisco ILS 28R.

• The inclusion of both hard and soft constraint windows
(discussed later) on actions is particularly important for



Figure 4: The CHAP-E display

monitoring pilots. Sometimes actions like lowering the
landing gear could be performed much earlier, but it
would be inefficient and noisy to do so. Standard pro-
cedure is to do it just before the final approach fix. The
preferences therefore provide a more restrictive window
where the actions should be performed, and allow us to
warn the pilots when this does not happen by the end of
the preference window. This allows for reasonable alert-
ing, without becoming annoying for the pilots.

The plan fragment in Figure 3 contains approximately 1/4
of the events, actions and monitors necessary for this par-
ticular example approach. The PLEXIL executive has been
able to use the complete version of this plan to successfully
approach and land a 777 at San Francisco in simulation, as
well as to monitor pilot actions and warn when actions are
not taken within the preference windows.

CHAP-E Display
The purpose of the CHAP-E display is to provide suggested
flight procedures to a pilot for maintaining safe flight (see
Figure 4). It consists primarily of a vertical profile and way-
point display, showing the expected vertical profile of the
aircraft. Below that are the actions to be executed. Each ac-
tion has an associated time window, representing when the
pilot should perform it. The display moves horizontally as
time passes.

Vertical Profile and Waypoints The CHAP-E vertical
profile display includes waypoint information from the flight
plan to provide a reference for the pilots. The profile shows
the reference altitude of the aircraft given the current route.
The aircraft is depicted as a small triangle at the upper left of
this profile. Labels above the vertical profile show waypoint
locations that the aircraft will reach when following the cur-
rent flight plan. These provide a reference for the pilots;

the labels will match instructions for airport-specific flight
procedures, and may be referenced by air traffic control re-
quests. They also help give scale for when a pilot should
execute each action.

Actions and Time Windows Generally, a pilot should be
allowed flexibility on when to execute actions in the plan.
This means we depend on the pilots’ training and habits so
they may determine risk and action priority. To accommo-
date this aim, we display actions to the pilot in a gantt chart-
like style indicating time windows for when the pilot should
execute them. An example of an execution window is shown
in Figure 5. Each window consists of five time points: an
earliest start time (EST), preferred earliest start time (PEST),
preferred start time (PST), preferred latest start time (PLST),
and latest start time (LST). The display shows the preferred
earliest start time, preferred latest start time and latest start
time. The two end points, the earliest start time and latest
start time, represent the interval in which the action may ex-
ecute and the plan will still be valid. If executed outside of
these times, the plan will likely fail. The preferred earliest
and latest start times show when we prefer the pilot perform
the action. The preferred start time is when we would ide-
ally perform the action in a fully automated system. The
execution times are given in terms of time relative to reach-
ing waypoints during the flight plan and displayed in a gantt
chart style.

To obtain the earliest and latest start times, CHAP-E
can simulate the execution of the plan across varying start
times for each action using an advanced simulation capa-
ble of capturing the physics and expected autopilot modes
of the aircraft (see Figure 6 for a visual depiction of sim-
ulation) (Kaneshige et al. 2014). The simulation takes a
series of commands and the time at which we expect the
pilot to execute the commands, where each command cor-



responds to a pilot action in the plan. From this, it returns
a per-second discretized profile of the state of the aircraft
over the course of the displayed period. Using operational
constraints, CHAP-E can determine whether the execution
schedule would result in a safe flight and achievement of the
goal (i.e., landing safely on a specified runway).

As indicated above, the display only shows the preferred
earliest start time, the preferred latest start time and the latest
start time. As discussed earlier, many actions, such as low-
ering the landing gear, can be performed very early without
causing a plan to become invalid. Displaying the earliest
start time may clutter the display with many long overlap-
ping action boxes. To avoid that, we instead rely on pre-
ferred start times inferred from standard operating proce-
dures, which usually suggest particular times for action ex-
ecution. We use these to infer the preferred time points, and
display the preferred earliest start time. The latest start time
is more critical, so we display it. The preferred latest start
time represents when we warn the pilot if an action has not
yet been performed. For finding the preferred time points,
we rely on domain knowledge for now, though we may ex-
plore other options to determine them automatically.

To show these time points, we use standard coloring of-
ten seen on flight displays. CHAP-E draws a green window
between the preferred earliest start time and the preferred
latest start time and an amber window between the preferred
latest start time and the latest start time. If the preferred lat-
est start time passes, a warning is spoken by CHAP-E with
the action name (e.g., “gear down”) and a status message is
displayed at the bottom of the CHAP-E display. If the lat-
est start time point passes, then a new plan will be displayed
to recover.5 When an action is executed by the pilot, it will
be removed from the display, and the displayed action time
windows below it will adjust their positions by moving up.

For the earliest and latest start times, we currently are
using hard-coded time windows, but are implementing an
initial technique for using the simulation to find them au-
tomatically. Our initial approach is a hill-climbing method,
where we will first begin with a working schedule. Then,
for each action, CHAP-E will simulate executing that ac-
tion an arbitrary ✏ amount later. If the simulated trajectory
continues to remain within specified operational limits and
reach the goal, then the process repeats with another ✏ in-
crease. Once a non-compliant simulated execution is found,
the process begins with that action again simulating execu-
tion ✏ sooner than the original time point, and again repeat-
ing this process until a non-compliant simulated execution is
found. The process then moves to the next action until all ac-
tions in the displayed plan can be simulated. In the case that
not all actions are known due to lack of plan expansion, we
will simulate as much into the future as possible. Note that
this process is deterministic in nature and does not take into
account potential exogenous events. It also treats the actions
as being independent for purposes of computing the earliest
and latest start times. In general this assumption is not valid.
Performing an action like lowering flaps increases drag and

5Note that at the time of this writing, we are developing the
planning mechanism for this step.

EST PEST PLST LSTPST

Displayed

Gear%Down

Figure 5: Time windows of an example “gear down” action,
showing the earliest start time (EST), preferred earliest start

time (PEST), preferred start time (PST), preferred latest
start time (PLST), and latest start time (LST)

causes the aircraft to slow down, which may change the time
windows for subsequent actions and events triggered off of
aircraft speed. As a result, when such an action is performed,
subsequent windows may expand, shrink, or shift.

When an action is performed, CHAP-E must recognize
this and remove the action from the display. This is more
complex than it might first appear. For example, if the rec-
ommended action is to set the MCP-Speed to 163 knots,
but the crew instead sets the speed to 165 knots, CHAP-E
must determine whether this “unexpected” action still satis-
fies the necessary conditions for future actions that were to
be achieved by the “recommended” action. If so, CHAP-E
can remove the recommended action from the display. If not,
CHAP-E will leave the recommended action(s), but must
determine whether the unexpected action interferes with any
conditions that need to be preserved in order for the plan to
remain valid.

Challenges exist in continuously determining execution
windows. The state of the flight continuously changes as
the aircraft progresses. This means the time windows can
change as unpredicted adjustments or pilot action (or inac-
tion) occur. Though the simulation is relatively fast (approx-
imately 60 milliseconds for a 5 minute projection), it may
be impractical to rediscover time windows continuously.
We’re exploring several possibilities to mitigate this issue,
including using courser-grained hill-climbing until impor-
tant events occur (e.g., unexpected or missed pilot actions).

Discussion and Future Work
On commercial airliners, two pilots work in tandem during
flight. One pilot, the pilot flying (PF), performs most of the
direct piloting operations, including interacting with the air-
craft controls. The other pilot, the pilot monitoring (PM),
handles communication, runs checklists, and monitors the
aircraft state, occasionally taking requests from the PF to
perform certain actions on the aircraft. When the PF misses
performing an action or fails to notice a significant change
to the aircraft state, the PM notifies the PF.

Though CHAP-E initially has focused on assisting hu-
man pilots with plan execution via a display, we also have
been exploring adding stronger automation characteristics to
the system so it can handle both PF and PM tasks given a
current plan. We plan to explore methods for the system to
switch between PM and PF tasks. Currently, we can auto-



Figure 6: Visual depiction of plan execution simulation

mate flight completely by using the preferred start time as
the time to execute actions. However, we require a mecha-
nism for transferring flight control to CHAP-E for particu-
lar actions. This may happen automatically (for example, if
the pilots appear to have missed performing a critical action)
or upon request (for example, if the pilots become occupied
and wish CHAP-E to perform specific actions). Our goal
is to make the process intuitive to a pilot. We have begun
considering using a touch-screen interface on CHAP-E to
tap on actions that the pilots hope CHAP-E will perform, as
well as methods of automatically determining safety-critical
actions that may require CHAP-E’s intervention when a pi-
lot fails to perform them.

Acknowledgements
This work was supported by NASA Aeronautics’s
SASO/SECAT program.

References
Billings, C. E. 1996. Human-centered aviation automation:
Principles and guidelines. Technical Report 110381, NASA
Ames Research Center.
FAA. 2013. Operational use of flight path management
systems.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal

of Artificial Intelligence Research 20:61–124.
Frank, J. D.; Spirkovska, L.; McCann, R.; Wang, L.;
Pohlkamp, K.; and Morin, L. 2013. Autonomous mission
operations. In IEEE Aerospace Conference.
Frank, J. D.; Iverson, D.; Knight, C.; Narasimhan, S.;
Swanson, K.; Scott, M. S.; Pohlkamp, K. M.; Mauldin,
J. M.; McGuire, K.; and Moses, H. 2015. Demonstrating
autonomous mission operations onboard the international

space station. In AIAA SPACE 2015 Conference and Ex-

position.
Kaneshige, J.; Benavides, J. V.; Sharma, S.; Panda, R.; and
Steglinski, M. 2014. Implementation of a trajectory pre-
diction function for trajectory based operations. In AIAA

Atmospheric Flight Mechanics Conference.
Kortenkamp, D.; Bonasso, R. P.; Schreckenghost, D.; Dalal,
K. M.; Verma, V.; and Wang, L. 2008. A procedure repre-
sentation language for human space flight operations. In 9th

International Symposium on Artifical Intelligence, Robotics

and Automation for Space i-SAIRAS.
MITRE. 2016. The solo pilot gets a second
set of eyes. https://www.mitre.org/publications/project-
stories/the-solo-pilot-gets-a-second-set-of-eyes.
Stetson, H. K.; Frank, J. D.; Haddock, A.; Cornelius, R.;
Wang, L.; and Garner, L. 2015. AMO EXPRESS: A com-
mand and control experiment for crew autonomy. In AIAA

SPACE 2015 Conference and Exposition.
Vadlamudi, S.; Chakraborti, T.; Zhang, Y.; and Kamb-
hampati, S. 2016. Proactive decision support using auto-
mated planning. Technical report, Arizona State University.
https://arxiv.org/abs/1606.07841.


