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One impediment to the realization of effective planning systems has been the problem

of controlling search. In this paper we lay the foundations for a decision-theoretic approach

to the control of planning search. We assume that the planner has models available of the

cost of achieving atomic goals and their negations. We also assume that it has models of

the likelihood of being able to achieve such goals. Using this information, we show how a

planner can choose between alternative actions for achieving goals and subgoals, can choose

the order in which to plan for conjuncts in a conjunctive goal or subgoal, can decide when

to make assumptions or insert conditionals into a plan, and can decide when to interleave

planning with execution.
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1 Introduction

One of the most difficult areas for A.I. has been that of building systems that can do synthesis

tasks such as planning and design. Such systems are clearly important if we wish to have

robots that can function autonomously in complex or remote environments, or systems that

can design non-trivial electrical or mechanical devices.

By a planning system, we mean a program like that illustrated in Figure 1 that takes

a statement of a goal or task to be performed, some description of the state of the world,

and a description of the actions available. It then outputs some program of actions that will

likely result in achieving the goal. In general, this program might include sensory actions,

conditionals and loops. It might also be incomplete, in the sense that certain portions may

require additional planning before they can be achieved.

There have been many attempts to build general purpose planning systems in AI. Some

of the earliest and most well known systems are those of Green [11], Fikes and Nilsson [2, 3],

Sacerdoti [17, 16, 18], Tate [27, 26], and Warren [31]. Unfortunately, none of these early

planners proved very satisfactory for nontrivial problem tasks. One reason is that they suf-

fered from fundamental epistemological deficiencies. For example, in most of these systems

the notion of time was limited to the simple situation calculus, uncertainty or incomplete-

ness could not be modelled, and there was no model of sensory actions, conditionals, or

actions with conditional outcomes. These epistemological deficiencies are further reflected

in basic architectural deficiencies of these early planners. For example, with no knowledge

of uncertainty or incompleteness, these planners were designed to produce only complete

plans that were guaranteed to succeed. As a result, these planners did not have to deal with

more complex plan structures like conditionals and loops. In the last 10 years there has been

a good deal of work in AI on these epistemological problems, and on developing planning

procedures that deal with such things as uncertainty, sensory and conditional actions, and

actions having derivable consequences.
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There is however, a second, and somewhat more insidious reason that general purpose

planning and synthesis systems have not been realized; that is the problem of efficiency. For

any nontrivial planning problem, the search space of possible plans is absolutely enormous.

First of all, for any given subgoal that a planner is considering, there can be many different

operations that might achieve it. The majority of these will probably be unfruitful, because

their preconditions are difficult or even impossible to satisfy. A second complication is that

many of the subgoals that a planner encounters are likely to be conjunctions. If the planner

chooses to work on the subgoals in the wrong order, a good deal of backtracking may be

required in order to find a plan, and the plan that results may be very inefficient.

The addition of uncertainty or incompleteness to the system’s world model adds addi-

tional complexity to the search space and the search process. For example, when should the

planner postpone further work on a plan and allow execution to begin? When faced with

uncertainty should the planner make a plausible assumption about the state of the world,

should it introduce sensory actions and conditionals into the plan, or should it try to force

the world into a known state?

1.1 Approaches to the Efficiency Problem

One approach to dealing with the efficiency problem in planning is to provide a library of

skeletal or compiled plans for the goals expected by the system [3, 6]. To construct a plan a

skeletal planner selects the appropriate skeletal plan, and then fills in all of the details.

If the number of goals and situations a planner is expected to face are relatively small it

may be possible to provide a sufficient library of plans so that the planner will never have to

resort to first-principles planning. However, if the planner must face a tremendous range of

possible goals and situations (as in the commonsense world) the planner will eventually run

into a situation not covered by a skeletal plan. Thus, while a large library of skeletal plans

seems to be crucial for good performance, skeletal planning alone is not sufficient. For those

problems where no skeletal or compiled plan exists we are left with the same nasty search

control problem that confronted early general purpose planning systems

Several methods have been suggested for helping to control search in general purpose

planning systems. Two of the most notable deal with controlling search for conjunctive goal

expressions. One approach, taken by Sussman [25], Sacerdoti [17, 18], Wilkins [32], and

others, is to plan for each conjunct separately, and then try to combine the partial plans in

ways that ensure that they do not conflict with one another. A second important technique

is hierarchical planning [16, 26, 23, 24], where different predicates are given priorities and

those with higher priority receive planning attention before those with lower priority. The

intent of this scheme is to ensure that those conjuncts critical to accomplishing a goal are

processed before those that are relatively minor.
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The trouble with both of these techniques is that they are brittle; in some cases they result

in very inefficient plans, in other cases they do not help to control the search. The method

of planning each conjunct separately and recombining the resulting plans is particularly

susceptible to this problem; if the goals interact heavily, the planner may not be able to put

the independent plans together, or may do so only in a very inefficient way. An example of

this is travel planning problems having more than one destination. Assembling independent

plans for getting to each destination could result in a good deal of wasted travel.

Hierarchical planning can also lead to inefficient plans, or may waste planning effort. The

trouble is that it is not always possible to provide a single static hierarchy that will result

in processing conjunctive goals in an efficient order. Thus, whether a particular conjunct is

critical to accomplishing a conjunctive goal, or merely a minor detail, depends heavily on

the state of the world. Both Sacerdoti [16] and Sproull [23] have remarked on this problem.

1.2 Approach

In this paper, we take a somewhat different approach to the problem of controlling search

in planning. The basic idea is to include models of the cost of achieving different atomic

goal expressions, and models of the chance these goal expressions can be achieved. Using

this information, simple decision theory can be used to evaluate the potential utility of

considering each of the different subgoals in the search space. This information can then be

used to guide a best-first search procedure in looking for plans to achieve the overall goal of

the planner.

As an example of the kind of information we require, consider the simple goal expression

At(x, l) of having a particular object at a particular location. In general, the cost of achieving

such a goal depends on many factors: the weight and fragility of the object to be moved, the

distance and terrain between the object and the intended location, how much stuff is piled on

the object and the intended location, and, of course, the capabilities of the agent. Thus, we

would not expect such a cost function to be just a simple distance or weight metric. Instead

it might consist of a number of rules (i.e. implications) perhaps involving other complex

concepts, such as the movability of an object, or the accessibility of a location.

One potential objection to this approach is that there is a vast amount of this kind of

information that will be necessary, and, as a result, it will be tedious, or perhaps impractical

to provide all of the necessary information. There are two answers to this objection. First

of all, in our view, knowledge of the difficulty and chance of achieving different goals is a

crucial part of commonsense knowledge about the world and about the actions available to

an agent. For example, we know that it is much easier to get a pencil across a room than

it is to get a truck to Japan, which is in turn much easier than getting something to Mars.

Such knowledge seems to play a crucial role in the way people focus their planning activity.
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A second answer to the above objection is that we do not believe that such knowledge

must be entered by hand. Initially we intend to supply the cost and probability models

by hand, however, it appears that techniques developed in [21] can be extended to allow a

system to automatically derive cost and probability models for goal expressions from more

basic cost information about the primitive actions available. Ultimately, machine learning

of these cost and probability models may also be feasible, but this is outside the scope of

this paper.

In some respects, the basic idea behind this approach is not novel; many people have used

models of the value of different subgoals in a search space, and have used best-first search

to make a choice among alternatives. In particular, Sproull [23] used this sort of decision

theoretic model in the construction of a travel planning program. What is novel about this

approach is

1. the way we estimate what the world will look like when certain goals must be achieved,

2. the way we determine the order in which to plan the conjuncts in a conjunctive goal,

3. the application of decision theoretic techniques to the problem of planning under un-

certainty.

In the sections that follow we will describe the approach in greater detail and show how

we believe these techniques can be applied to controlling search in planning. We start with

the simple case, by supposing that the planner’s model of the world is perfect. We also

suppose that its model of the available actions is perfect. Under these assumptions, we first

consider the case of choosing between alternative actions for achieving a top level atomic

goal. We then expand the treatment to cover arbitrary conjunctive subgoals. Finally, we

show how the same information can be used to automatically decide the order in which to

plan for conjuncts in a conjunctive goal or subgoal.

In Section 3 we reintroduce uncertainty into the descriptions and show how this affects

search control. Finally, we consider how these techniques can be used to decide whether

or not to interleave planning with action, and to decide whether or not to insert tests and

conditionals into plans.

2 The Certain World

To keep matters simple, we will first consider the case where the planner’s model of the world

is perfect, i.e. there is no uncertainty about the state of the world, or about the effects of

actions on the world. In the next section, we will relax this requirement and consider the

more realistic, but more complicated case where there is uncertainty about the state of the

world, and about the effects of actions.
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In order to talk about the control of planning, we first need to have a precise means of

referring to actions and plans, and their associated costs.

For convenience, we will use the first order predicate calculus with the usual syntax and

logical operators for describing the world. Any other language with sufficient expressive

power would do as well. We will use qs to refer to the proposition that q holds in the

situation s. A situation s can be characterized as the set of sentences that hold at some

particular instant in time. Note that we are not making a commitment to any particular

temporal logic, since the set of sentences that hold at a given time can be defined in any

reasonable temporal logic.

Primitive actions are taken to be individual operations that can be performed by an

agent without further reduction. For example, moving an arm joint to a particular angle, or

until a particular force is achieved might be primitive actions for a typical robot.

We will assume that the effects of actions are described by rules of the form:

q1 ∧ q2 ∧ . . . ∧ qj ∧ Performed(a)s ⇒ c1 ∧ c2 ∧ . . . ∧ ck

where the premises qi are normally dependent on s and the conclusions ci are normally

dependent on some situation s′ corresponding to the time when the action is completed.

We will refer to the qi as a precondition set for the action a and ci as a conclusion set

for a. If there is more than one such axiom for a given action, there would be more than

one such precondition and conclusion set. Normally when referring to the preconditions or

consequences of an action it will be clear which set we are referring to from context. We

will therefore use Pre(a) and Cons(a) to refer to the preconditions and consequences of an

action a in the given context.

We will use the expression C(a, s) to refer to the cost of performing a primitive action

a in the situation s. This cost could be any convenient measure of time or other resources

that might be required to perform the action. As noted in the previous section, we assume

that this information is available for all primitive actions.

By a plan, we will mean a sequence of primitive actions. The expression s|p will be used

to refer to the situation that results when the plan p is performed in situation s. For a plan,

p we define C(p, s) recursively as follows:

C(ab, s) ≡ C(a, s) + C(b, s|a)

B(q, s) will be used to denote the best plan for achieving a goal q in situation s. For the

certain world, the best plan is simply the cheapest one. That is:

B(q, s) ≡ p ∈ Plans(q) : minC(p, s).

By a partial plan we will mean an arbitrary set of constraints on the world. Thus a goal

statement is a partial plan. Likewise, the specification of a partially ordered set of actions

to be performed is also a partial plan.
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Figure 2: Simple choice between actions

Using the notion of a best plan, we can extend the definition of C to partial plans. For

a partial plan q we let C(q, s) refer to the expected cost of performing B(q, s) (the best

possible completion for q) in s. Formally,

C(q, s) ≡ C(B(q, s), s).

As noted in Section 1.2 we assume that C(q, s) is available for all q that are atomic expressions

or negations of atomic expressions.

In similar fashion, we extend the | notation to partial plans. For a partial plan q we let

s|q refer to the situation that would result if B(q, s) (the best possible completion of q) were

performed in s. Formally,

s|q ≡ s|B(q, s).

2.1 Choosing Between Alternatives

Suppose that we have a planner working on a top-level goal g, and there are two different

actions a1 and a2 that would allow the goal to be achieved, as illustrated in Figure 2. Which

possibility should the planner choose? If both a1 and a2 are guaranteed to succeed, and all of

their preconditions are satisfied in the world, the decision is a simple one; the planner should

choose the action that is cheapest to perform. Thus, if C(a1, s) < C(a2, s), the planner

should prefer a1, whereas, if C(a1, s) > C(a2, s), the planner should prefer a2. Since we are

assuming that the planner can compute C(a, s) for any primitive action a and situation s,

it is straightforward to mechanize this comparison.

If the preconditions for an action a are not satisfied, the selection task is somewhat

more difficult; we need to know both the cost of performing the action a and the cost of

achieving the preconditions for the action. The cost of establishing the preconditions is

given by C(Pre(a), s). The situation that would result from establishing the preconditions

is s|Pre(a), so the cost of performing a in this new situation is given by C(a, s|Pre(a)).

Putting these two costs together, the cost of achieving g using a is given by

C(Pre(a), s) + C(a, s|Pre(a)). (1)

To compare two actions, a1 and a2, we would need to calculate this expression for both

actions. However, unlike the simple case where the preconditions are already established,
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these expressions are not so easy to automatically compute. First consider the C(a, s|pre(a))

term. As before, we are assuming that the planner can compute C(a, s) for any primitive

action a and situation s. The trouble is, we don’t yet know what the situation s|Pre(a)

looks like. In order to discover this, we would need to find the best plan for establishing

Pre(a) in s and then use this plan to predict the resulting state. Doing all of this planning

would defeat the purpose of our cost analysis – to direct planning effort to only the most

promising portions of the search space. We therefore need a computationally tractable way

of estimating what s|q looks like. If q is consistent with s it makes sense to just assume that

s|q ≈ s ∪ q. But if q is not consistent with s we need to overturn those facts in s that are

in conflict with q. We can use the possible world construction described in [8, 9, 10] for this

purpose; we approximate s|q by the nearest possible world to s in which q holds. Using this

construction, it is possible to estimate s|Pre(a), which allows us to compute C(a, s|Pre(a)).

The other term, C(Pre(a), s) is equally troublesome. Recall that we are assuming the

planner can compute C(q, s) for any atomic proposition q. If Pre(a) consists of only a single

clause we are in business. Otherwise, we need some way of computing C(Pre(a), s) from

information about each of the atomic clauses in Pre(a). This is the subject of the next

section.

2.2 Conjunctions

Consider a conjunction e consisting of the conjuncts e1, . . . , en and suppose that we are

interested in knowing the expected cost of achieving the conjunction using the best possible

plan. If none of the clauses in e interact with each other in any way, we could simply find

the best plan for achieving each one in isolation, and then string those plans together. The

cost of the resulting plan would be

C(e, s) =
∑
c∈e

C(c, s).

Unfortunately, this kind of independence rarely holds; achieving one conjunct c often

changes the world in such a way that some of the other conjuncts become either easier or

more difficult. If we knew the order in which the conjuncts would be achieved we could take

this effect into account in computing the cost of achieving the conjunction. Let the function

τ(c) denote the set of conjuncts in e that will be achieved before c. Given such an ordering

function τ , the cost of achieving the conjunction e would be given by

C(e, s) =
∑
c∈e

C(c, s|τ(c)). (2)

Using the techniques introduced earlier for estimating s|q we could use this equation to

automatically compute the cost of achieving the conjunction e. There are, however, two
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important bugs with this approach. First, we have not shown how to find an appropriate

temporal ordering τ for a set of conjuncts. In fact, in the case of non-serializable conjunctions

there may be no such temporal ordering. We will postpone this issue until Section 2.4. For

now, assume that we can find one. The second problem is that we have assumed that none

of the conjuncts in e share any free variables. While this is sometimes true of conjunctive

goals, it is by no means universally true. For example, consider a simple goal like “get B on

a green object”, which might be formalized as

On(B, x) ∧Green(x)

In this case, the best possible plan would involve putting B on a nearby green object, or if

there aren’t any green objects, on a nearby object that is easy to paint. However, equation (2)

would estimate the cost of achieving the conjunction as the cost of moving B to the nearest

object that would support B, plus the cost of painting the easiest object to paint. This

estimate might be very low, because the closest object that supports B might not be easy

to paint, and the easiest object to paint might not support B, or might be far away.

To obtain the best plan for a conjunctive goal like this, a planner might need to try many

different variable bindings for the shared variables. In practice this is often impractical be-

cause of he size of the search space. As a result, most planners plan for one conjunct, binding

any free variables in the process, then plan for another, and so forth, only backtracking to

consider alternative bindings when failing to find a plan for some later conjunct. If we knew

this planning order for the clauses in a conjunction we could use this information to get a

better estimate of the cost of plans that are likely to result from such planning procedures.

Let the function ϕ(c) denote the set of conjuncts in e that precede c in the planning order.

Furthermore, let c\q refer to a new clause c′ in which all of the variables shared with q have

been bound to skolem constants. We can then write down an approximate equation for the

cost of achieving a conjunction containing shared variables:

C(e, s) =
∑
c∈e

C(c\ϕ(c), s|τ(c)). (3)

Given ϕ and τ we could easily automate this computation. As with τ , we have not shown

how to find a planning order ϕ for a conjunction. We will postpone consideration of this

matter until Section 2.5. For now, assume that we have this information available.

It is interesting to note that while equation (2) provides a lower bound on the cost of

achieving a conjunction, equation (3) provides an upper bound. If the planner is somehow

smart, and chooses good bindings for the shared variables, it might be able to produce a

plan that is better than the plan that would be achieved by binding the variables in a strict

planning order. Normally, with a best first search procedure, a lower bound cost estimate

would be preferred, because it retains admissibility of the search procedure. However, we

speculate that the upper bound will generally prove to be more accurate, and hence will do
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Figure 3: Choice between actions

a better job of controlling the search. This is an interesting empirical question that remains

to be resolved.

One other interesting side issue raised by this analysis is the possibility of using cost

information to help a planner choose good bindings for shared variables in a conjunction prior

to the actual planning process for the individual conjuncts. Consider theOn(B, x)∧Green(x)

example: Given rules for estimating the cost of achieving On, and rules for estimating the

cost of achieving Green, the planner could form the cost expression that is the sum of the

two. The planner could then search for an object x in its model of the world that would

minimize this cost expression. After finding such an x it could then substitute the x into the

conjunctive goal expression, and then plan for the individual conjuncts. The advantage of this

approach is that the search for good bindings for the shared variables is done independently

of the search for a good plan for achieving each conjunct. For conjunctive goals that share

variables this may result in either a combinatorial savings, or more efficient plans.

2.3 Choosing Between Alternatives (Revisited)

In Section 2.1 we considered the problem of choosing between two alternative actions a1 and

a2 for achieving a top level goal g. Using the analysis of the previous section, we can now

extend the analysis from Section 2.1 to cover the choice between alternatives for goals that

are not top level atomic expressions. Consider the situation shown in Figure 3 where we

have a top level goal g that has been reduced to the conjunction e = e1 ∧ . . . ∧ en. Suppose

that the planner is working on the conjunct c ∈ e, and there are two actions a1 and a2 that

could be used for achieving c. For convenience, let p refer to the set of clauses in e that

precede c in the temporal order, and let f represent the set of clauses in e that follow c in

the temporal order. Formally,

p ≡ τ(c),

f ≡ e− c− τ(c).

The total cost of achieving the conjunction consists of three components. First, we have

the cost of achieving those conjuncts, p, that occur before c in the temporal order. The cost
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of achieving these conjuncts is unaffected by the choice between a1 and a2, and therefore

consists of a subset of the terms from equation (3):

C(p, s) =
∑
d∈p

C(d\ϕ(d), s|τ(d)).

The second component is simply the cost of achieving c in the situation s|p using either a1

or a2. This cost is given by equation (1)

C(Pre(ai)ai, s|p) = C(Pre(ai), s|p) + C(ai, s|p|Pre(ai))

The third component is the cost of achieving those conjuncts, q, that follow c in the temporal

ordering τ . After achieving c the situation will be s′ ≡ s|p|Pre(ai)|ai. Each clause, d, that

follows c will therefore be achieved in the situation s′|τ(d) − p − c. The cost for achieving

these conjuncts is therefore

C(q, s′) =
∑
d∈q

C(d\ϕ(d), s′|τ(d)− p− c).

Putting these three components together we get

∑
d∈p

C(d\ϕ(d), s|τ(d)) + C(Pre(a), s|p) + C(a, s|p|Pre(a)) +
∑
d∈q

C(d\ϕ(d), s′|τ(d)− p− c).

In comparing two actions a1 and a2 for achieving c, the first sum in this expression will be

the same for both actions and will therefore cancel out. However, the final sum cannot be

dropped. This is because the terms depend on the situation s′ which is influenced by the

actions used to achieve c. As a result, in general we cannot choose the action for achieving

a conjunct c independent of the other clauses in the conjunction.

2.4 Computing Temporal Order for Conjunctions

In the previous two sections we assumed that we knew the appropriate temporal ordering,

τ , for each conjunction. Normally, the temporal ordering for the conjuncts in a conjunction

is decided during the actual planning process. The planner works on one conjunct, and in

doing so, finds temporal constraints among the conjuncts. In some cases conjunctions may

not be serializable [12]; that is, it may be necessary to partially achieve one conjunct, then

partially achieve another, before completely achieving either one. The classic example of

a non-serializable conjunctive goal is Sussman’s anomaly [25]. In Sussman’s anomaly the

goal is the simple blocks world statement On(A,B) ∧ On(B,C) and the database contains

On(A, Table), On(B, Table), and On(C,A). If we attempt to satisfy either conjunct in its

entirety we will end up undoing that conjunct in order to achieve the other conjunct. In

such cases it doesn’t really make sense to talk about a temporal ordering for a conjunction.
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However, our purpose in finding a temporal ordering for a conjunction is 1) to estimate the

cost of achieving the conjunction, and 2) to allow us to choose a reasonable order in which

to plan for the clauses in the conjunction. Our assumption of a temporal order in no way

restricts the actual temporal order to be determined during the planning process. Thus,

even for non-serializable conjuncts it makes sense to use an approximate temporal ordering.

Let e refer to the set of conjuncts of interest. First suppose that none of the elements in

e share any variables. If τ is the temporal ordering in which the conjuncts will be achieved,

the cost of achieving the conjunction is, as given previously in equation (2):

C(c, s) =
∑
c∈e

C(c, s|τ(c))

A best possible temporal ordering would then be one that minimizes this expression, i.e.:

τ : min
∑
c∈e

C(c, s|τ(c)).

If there are variables shared between clauses in e the choice becomes more complicated.

In this case we are interested in finding the best possible ordering given that those variables

are already chosen to give the optimal plan. Formally, let v refer to the set of all variables

that are shared by two or more conjuncts in e. Then we are interested in choosing the

ordering:

τ : min
v∈D
τ

∑
c∈e

C(c\v, s|τ(c)),

where D is the domain over which the variables v can range.

This has rather abysmal computational properties. In the first place, the domain D may

be large, making the minimization over v impractical. One possible approach is to choose

v arbitrarily from the domain by binding those variables to skolem constants and hope that

the resulting temporal ordering provides an accurate cost assessment for the actual plan that

would be found for this conjunction.

Even if we do this, there is a second problem: given n conjuncts we still face the prospect

of having to consider n! possible temporal orderings. Doing this is reasonable if n ≤ 4. For

large n we need a more efficient means of searching the space of possible orderings.

One possibility is to do pairwise comparisons between the different conjuncts. For two

conjuncts c and d, if

C(c, s) + C(d, s|c)� C(d, s) + C(c, s|d)

then it is reasonable to suppose that c should precede d. Thus we could determine for

conjunct 1, which, if any of the remaining conjuncts are strongly affected if conjunct 1

precedes or follows them. Then for each such conjunct, c, we could determine which other

conjuncts are strongly affected by their ordering with respect to c, and so on. This approach

has n2 behavior, which is reasonable considering that the number of conjuncts in a typical
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conjunction is generally less than ten. However, note that this approach is not guaranteed to

give the best ordering, because in doing these pairwise comparisons we are ignoring the effect

of other conjuncts that we may later discover need to precede one or both of the conjuncts.

Another way of saying this is that the effect of one conjunct on the cost of achieving a later

one is not always independent of intervening conjuncts, or of other conjuncts preceding both

conjuncts. However, this heuristic approach does seem to match our intuitions about how

rough temporal ordering can be done quickly.

2.5 Computing Planning Order for Conjunctions

Given a temporal ordering τ for a set of conjuncts e, we now consider the problem of finding

the best planning order ϕ for the conjuncts. Our purpose in doing this is 1) so that the

planner can use equation (3) to evaluate the cost of achieving a conjunction, and 2) so that

the planner can work on the conjuncts in a sensible order.

It is important to note that the planning order for a set of conjuncts may be very different

from the temporal ordering. To see this, consider a simple (partial) travel plan consisting of

three legs: travel from Stanford to San Francisco airport (SFO), travel from San Francisco

airport to Boston’s Logan airport, and travel from Logan airport to MIT. The temporal

ordering for these three steps is obvious – first we get to the airport, then fly to Boston, then

get to MIT. Suppose that we tried to plan for these steps in the same order. In this case we

may arrange to end up at the airport at a time when there are no convenient flights, or when

the only flight available is costly. Worse yet, it might be that Logan is snowed in, or that

the air traffic controllers are on strike. This could lead to a very long wait at the airport.

For this conjunction, the planner should plan the flight leg before planning for ground

transportation at either end. Intuitively, the reason is that the number of flights is limited,

and the difference in cost between these flights may be substantial. In contrast, the other

two legs can be accomplished at almost any hour, and the cost of achieving them does not

depend significantly on the time of day.

It is worth noting that the planning order may not be fixed for a given conjunction. In

our trip example, the best planning order might very well depend upon the actual circum-

stances. If the trip were from Stanford to UCLA, we might wish to plan one of the ground

transportation legs first, in order to take advantage of available rides, or desirable traffic

conditions. In flying to LA this is a reasonable strategy because there are so many flights

available that the time of departure probably has little effect on the cost or likelihood of

achieving that leg of the trip.

This example illustrates why the technique of hierarchical planning has often proven

problematic; there may not be a single, fixed ordering for a given conjunction. The best

ordering depends, in general, on the state of the world and on the other possible actions

13



available to the agent.

In equation (3) we gave the following expression for computing the cost of achieving a

conjunction e using a temporal ordering τ and a planning order ϕ:

C(e, s) =
∑
c∈e

C(c\ϕ(c), s|τ(c))

Given a temporal ordering, τ , we could therefore find the best planning order ϕ by simply

trying every possible permutation of the clauses from e in the above equation, and choosing

the one that gives the cheapest total cost. Thus:

ϕ : min
∑
c∈e

C(c\ϕ(c), s|τ(c))

Using this equation to determine planning order suffers from the familiar problem of hav-

ing to consider all n! possible orderings of the conjuncts. Fortunately we can do much better

than this by considering how the terms in the summation are affected by the planning order.

We first note that the lowest possible expected cost for a clause c is given by C(c, s|τ(c)),

i.e. the expected cost with none of its variables bound. If variables are bound in the plan-

ning of other clauses, this cost could go up. The highest possible cost is when all variables

shared with other clauses are already bound. In this case the expected cost of achieving the

conjunct would be given by C(c\v, s|τ(c)), where v is the set of shared variables in c. The

basic insight is that if these two costs are not much different (i.e. binding the variables in

a conjunct doesn’t have much effect on the cost of achieving the conjunct) we can postpone

working on the conjunct until later. Formally:

Theorem 1 Let v be the set of all variables shared by two or more conjuncts in a conjunction

e. Planning for a conjunct c ∈ e can be postponed until after planning for all other conjuncts

in e if

∆C(c, v) ≡ C(c\v, s|τ(c))− C(c, s|τ(c))

is small compared to C∗(e, s) ≡
∑
c∈e

C(c, s|τ(c)).

Using this theorem we could examine the conjuncts initially, and postpone those with

small ∆C. We could then repeat the whole process, using the reduced set of conjuncts and

the corresponding reduced set of variables. For many problems this is enough to reduce the

number of conjuncts sufficiently that the n! problems go away. In particular, this approach

disposes of the trip planning problem quickly, because ∆C is small for both ground trans-

portation legs of the trip in comparison to C∗, which includes the cost of the flight. As a

result, planning for these two legs would be postponed until after planning for the flight.

The above theorem also suggests a powerful heuristic algorithm for determining planning

order. The basic idea is to repeatedly strip off the conjunct that suffers the least by being

postponed.

14



Algorithm 1

1. Let v be the set of all variables common to two or more conjuncts in e.

2. For each conjunct c ∈ e compute ∆C(c, v).

3. Remove the conjunct with the smallest ∆C value from the set e. Planning for this

conjunct should be postponed until after planning for all other conjuncts in e.

4. Remove all other conjuncts, d, from e for which ∆C(d, v) is negligible. Planning

for these conjuncts should also be postponed until after planning for all remaining

conjuncts in e.

5. Repeat until e is empty.

We can further improve on this algorithm by noticing that ∆C does not need to be

recomputed for every conjunct remaining in e each time we remove a conjunct from e. In

fact, the only ones we need to recompute are those containing a variable that is shared

only with the conjunct that was removed. Thus, if we were to keep a list of the conjuncts

containing each variable, when a conjunct is removed, we could immediately determine those

conjuncts remaining that share variables uniquely with the conjunct that was removed.

In the worst case, this algorithm has n2 behavior. This occurs when every conjunct

that is removed causes recomputation of ∆C for every remaining conjunct in the set e. For

example, the conjunction

r1(x12, x13, . . . , x1n)

r2(x12, x23, . . . , x2n)
...

ri(x1i, x2i, . . . , xi−1,i, xi,i+1, . . . , xi,n)
...

rn(x1n, x2n, . . . , xn−1,n)

takes this algorithm Θ(n2) time. However, this is a particularly bizarre case because every

conjunct uniquely shares one variable with every other conjunct. Suppose that a conjunction

has k variables that are shared by two or more conjuncts. Note that each one of these vari-

ables can cause the recomputation of ∆C for only a single conjunct (the last one remaining

in the ordering process that contains that variable). Thus, the above algorithm actually has

a worst case behavior of n+k (for k < n2). For the typical conjunction, k ≤ n, which means

that the behavior of the algorithm is usually linear in n.

Another interesting property of this algorithm is that recomputed values of ∆C always

get smaller. To be more precise:

v′ ⊂ v ⇒ ∆C(c, v′) ≤ ∆C(c, v)
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This is why we can remove all other conjuncts having negligible ∆C(c, v) at each stage in

the algorithm; their values can only get smaller as we remove more conjuncts.

While the above algorithm is heuristic in nature, we can actually prove some rather

good bounds on its performance. Let c1, . . . , cn be the ordering determined by the above

algorithm. Let vi be the set of shared variables remaining in e just before the clause ci is

postponed. The cost of the plan produced using this planning order will be

∑
ci∈e

C(ci\vi, s|τ(ci))

The best possible plan can be no better than

C∗(e, s) ≡
∑
ci∈e

C(ci, s|τ(ci))

If we subtract the two, we get∑
ci∈e

C(ci\vi, s|τ(ci))− C(ci, s|τ(ci))

=
∑
ci∈e

∆C(ci, vi)

which is just the sum of the final ∆C values computed by the algorithm for each conjunct.

It is a simple matter to modify the algorithm to keep track of this running sum. As long

as the sum remains small in comparison to the overall expected cost of the plan C∗, the

ordering provided by the algorithm is guaranteed to be a good one. However, if the sum

becomes large, it may be worthwhile to consider other possible orderings. This could be

done by modifying the algorithm to consider postponement of other conjuncts than the one

with minimal ∆C if that ∆C is large. This changes the algorithm into a best-first search

procedure based on the accumulated sum of the ∆C values of postponed conjuncts.

3 The Uncertain World

In the analysis of the previous section we assumed that the planner had perfect knowledge of

the world, and perfect knowledge of the affects of its actions. When uncertainty is present,

either in the planner’s model of the world, or in the planner’s description of the available

actions, the analysis becomes considerably more complicated. We can extend much of our

analysis to deal with the uncertain world.

Consider again the simple case shown in Figure 4, where we have a top level goal g, and

there are two different actions, a1 and a2, that have some chance of achieving g. Suppose

that the preconditions for both of these actions are already true of the situation s. Further

suppose that a1 has only a 50% chance of achieving g while a2 is certain to achieve g. If a1
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Figure 4: Simple choice between actions

and a2 have the same cost then we should clearly prefer a2. But if a2 is much more expensive

than a1 it is no longer obvious what we should do. If after attempting a1, the action a2

would still be possible, we might want to try a1 first, and if that fails, then try a2. However,

if a1 changes the world so that a2 would no longer be possible then we may wish to prefer

a2.

From the above example we can see that when the world is uncertain, the decision between

two actions depends on several factors:

1. the cost of each action,

2. the chance that each action will achieve the desired goal,

3. the extent to which each action would damage the world in the event of failure, and

4. the importance of achieving the overall goal g.

The notion of the cost of performing an action is already familiar, but the other three factors

are new. In order to formalize the criteria for choosing between actions we need additional

notation allowing us to refer to probability and importance.

3.1 Preliminaries

We will use the expression P (q, s) to refer to the probability that a proposition q holds in

the situation s. For convenience we let

P (q, s) ≡ 1− P (q, s)

= P (¬q, s).

We let I(g) refer to the importance of a goal g. This quantity is to be regarded as the

price of failure to achieve the goal.

Recall, from the previous section, we defined C(q, s) for a partial plan to be:

C(q, s) ≡ C(B(q, s), s).
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Likewise, we defined s|q for a partial plan to be:

s|q ≡ s|B(q, s).

Unfortunately, our simple definition of the best possible completion for a partial plan q only

took cost into account. In an uncertain world, this is no longer sufficient. We must therefore

redefine B to take probability of success and price of failure into account:

B(q, s) ≡ p : min[C(p, s) + P (¬g, s|p)I(g)]

As before, this is a minimization over all possible plans. The first term in the minimization

is the expected cost of performing the plan p in situation s. The second term is the expected

damage that will result from failure of the plan. The sum therefore represents the total

expected cost of using the plan p, exclusively, to try to accomplish g. Note that, unlike our

previous definition for B, we do not require that the best plan be guaranteed to succeed. For

our new definition, if I(g) is relatively small, the best plan could be the empty plan, having

no chance of success, but no cost. The total damage would then be just the importance

of the goal. Intuitively, this means that the goal is more trouble than it is worth. If I(g)

is larger, the best plan under this definition will typically consist of many smaller fallible

plans strung together with conditionals, so that if the first fails, the second is tried, and so

on. In this case the probability of failure usually becomes small, and the cost term in the

minimization dominates.

Using this new definition of B, our previous definitions of C and | remain unchanged.

We define one other quantity using B; A(q, s) will be used to refer to the achievability of q

in s, that is, the probability that the best plan for achieving the proposition q from the state

s will succeed. Formally,

A(q, s) ≡ P (q, s|q).

As mentioned in the Section 1.2, we are assuming that information is available that will

allow us to compute A(q, s) for atomic propositions and their negations. For convenience,

we define A(q, s) as follows

A(q, s) ≡ 1− A(q, s)

= P (¬q, s|q).

3.2 Choosing Between Alternatives

Using the notation introduced above, we can write down formal expressions for the expected

cost of using an action a to achieve a goal g from a situation s. First, there is the term C(a, s)

for the cost of performing a. There is probability P (Cons(a), s|a) that a will not achieve

its intended objective, Cons(a). In this case we need to consider the difficulty of achieving

g from the resulting state. This is given by the expression C(g, s|a). There is some chance
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that it will not be possible to achieve g from the state s|a. This is given by the probability

A(g, s) = 1− A(g, s|a). In this case, complete failure will occur, and the additional penalty

I(g) is incurred. Putting this all together, we have:1

C(a, s) + P (Cons(a), s|a)[C(g, s|a) + A(g, s|a)I(g)].

In the material to follow, we will often need to include many expressions like the one

above. For convenience, we define

E(p, g, s) ≡ C(p, s) + A(p, s)[C(g, s|p) + A(g, s|p)I(g)]. (4)

Intuitively, we can think of E(p, g, s) as referring to the net cost or damage that will be

incurred if the partial plan p is performed in attempting to achieve the goal g.

To see how we can use this equation, we return to the example illustrated in Figure 4,

where we have a top level goal g and two possible actions a1 and a2 that have some chance

of achieving g.

Example 1 First suppose that the preconditions for both actions hold in the initial state.

Further suppose that a1 has a 50% chance of achieving g while a2 is certain to achieve g. In

this case we have

E(a1, g, s) = C(a1, s) + .5[C(g, s|a1) + A(g, s|a1)I(g)]

E(a2, g, s) = C(a2, s).

Clearly, if C(a2, s) ≤ C(a1, s) the second action, a2, will be better.

Example 2 Suppose instead, that C(a2, s) � C(a1, s). If the importance of the goal is

low enough that .5I(g) ≤ C(a2, s) then we should prefer the first action, a1, alone.

Example 3 Again suppose that C(a2, s) � C(a1, s) but that the importance of g is very

high. If a1 messes up the world so that g cannot be accomplished easily from s|a1, then

either the term C(g, s|a1) will be large, or the term A(g, s|a1)I(g) will be large. If these are

larger than C(a2, s) then a2 will be preferred.

Example 4 Again suppose that C(a2, s)� C(a1, s) and the importance of g is very high.

However, suppose that a2 is still possible in s|a1. This means that C(g, s|a1) ≤ C(a2, s). As

a result a1 should be preferred, because if it fails, a2 can still be used.

1In fact, this expression is not quite right: The term C(g, s|a) is already an average over both situations

where a succeeds and situations where a fails. What we really want here is the situation resulting from

performing a in s where the intended consequences of a do not hold. As yet, we do not have any sensible

notation for representing this subtlety.
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In all of these examples we assumed that the preconditions for achieving the actions a1

and a2 already held in s. If this is not the case, more terms must be added to the cost

equation. For an action a, with preconditions Pre(a), we first need the term C(Pre(a), s)

for the expected cost of achieving the preconditions. There is chance A(Pre(a), s) that the

preconditions will not be achieved by the best plan for those preconditions. In this case we

will have the additional cost, C(g, s|Pre(a)) of achieving the goal g from this resulting state.

If g cannot be achieved (by the best plan) from this state the additional cost I(g) will be

incurred. Putting these terms together we get

C(Pre(a), s) + A(Pre(a), s)[C(g, s|Pre(a)) + A(g, s|Pre(a))I(g)].

Note that by our definition of E, this is just E(Pre(a), g, s). In addition to these terms we

have the terms for the case where the preconditions are accomplished using the best plan. The

probability of this is just A(Pre(a), s). In this case we will incur the cost E(a, g, s|Pre(a)).

Putting these terms together, the entire expected cost for achieving the preconditions for a,

followed by a is given by

E(Pre(a), g, s) + A(Pre(a), s)E(a, g, s|Pre(a)). (5)

As with the previous examples, we could use this equation to decide between any two

possible actions for achieving a top-level goal g.

3.3 Conjunctions

Given the above definitions it is fairly straightforward to extend the expected cost analysis

to conjunctions. As we did in Section 2.2, we assume a temporal ordering denoted by

the function τ and a planning order denoted by the function ϕ. The total expected cost

associated with each conjunct c will be E(c\ϕ(c), g, s|τ(c)). By our definition of E, this

includes the cost of performing the best plan for c\ϕ(c), as well as the expected cost of

achieving g in the resulting world if the best plan for c\ϕ(c) fails to achieve its objective.

Likewise, it includes the cost associated with failure to achieve g if g is not possible in the

resulting world.

Note, however, that the best plan for c\ϕ(c) will only be attempted if the best plans for

all of the other conjuncts earlier in the temporal ordering are successful. Thus, the E term

for c only contributes to the cost a certain percentage of the time, given by A(τ(c), s). The

expected cost contribution for each conjunct c will therefore be A(τ(c), s)E(c\ϕ(c), g, s|τ(c)).

Summing over all conjuncts, we get

E(e, g, s) =
∑
c∈e

A(τ(c), s)E(c\ϕ(c), g, s|τ(c)) (6)
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Figure 5: Coping with uncertainty

Note that equation (5) is just a special case of this equation, where the temporal order is

Pre(a) followed by a.

It appears that the analysis given in Sections 2.4 and 2.5 for determining temporal order

and planning order for a conjunction can also be extended to the uncertain world. The

primary difference seems to be that instead of using cost, C, and change in cost, ∆C, for

making ordering decisions, we must use a utility measure, the ratio of probability of achieving

a proposition, to expected cost of achieving that proposition. Formally:

U(q, s) ≡ A(q, s)

E(q, g, s)

and

∆U(q, v) ≡ U(q, s)− U(q\v, s)

The details of this analysis have not yet been completed.

3.4 Options under Uncertainty

There are a number of interesting control issues that arise in an uncertain world that do

not arise in a certain world. Suppose that the planner is currently investigating a subgoal

e = e1 ∧ . . . ∧ en for achieving its overall goal g. Let c be the conjunct in e that the planner

has chosen to work on next, and suppose that it is uncertain whether or not c will hold at

the appropriate time. The question is, what should the planner do about planning for c.

There are a number of different possibilities:

1. Assumption: it could assume that the condition c holds, and proceed to work on the

remaining conjuncts,

2. Coercion: it could coerce the world into a known state, by planning to achieve c

whether it holds or not,

3. Conditional Planning: it could insert a conditional into the plan and plan separately

for the two different possibilities.
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4. Predetermination: it could attempt to determine the needed information while plan-

ning,

5. Deferral: it could defer planning for c until later when the state of the world is known

more completely,

To illustrate these different possibilities consider a mobile robot operating in a machine

shop. Suppose that the robot’s goal is to fabricate a widget, and to do so it needs to bore a

hole in a piece of stock using the drill press. The complication is that there might be some

debris on the drill press table.

The first option, assumption, is that the robot could simply assume that the table is

clear, and continue planning for the remaining conjuncts in c. Intuitively, this would be a

reasonable strategy if 1) the probability is high that the table will be clean, and 2) failure

to take account of a dirty table would not be a disaster. Assumption is not so reasonable if

there is a high chance of failure, or if the widget is difficult to repair or replace.

The second option, coercion, is that of planning to achieve the precondition that the

table be clear, independent of whether or not it already is. For example, the robot could

guarantee that the table is clear by always vacuuming the table, whether there is debris there

or not. This would be a good alternative if the probability that the table is clear is very

low. It would also be a good alternative if it is easier to clean the table than to determine

whether or not it is clean. This might be the case if the robot has poor visual abilities.

The third option is for the planner to insert a conditional into the plan, so that the robot

will follow different predetermined courses of action depending on whether there is debris on

the table or not. In this case, the planner must also realize a sensory goal of determining the

condition of the table at the appropriate time. This option is a reasonable one if 1) there is a

fair chance that the desired condition will not hold, 2) the cost of achieving the condition is

significant, and 3) it is possible to determine the condition accurately using available sensory

actions.

The fourth option, predetermination, is for the robot to look across the room to see

if the drill press table is clear, and then proceed with the remainder of the planning. This

alternative can be seen as an extreme case of conditional planning, where the sensory actions

and the conditional are placed at the very beginning of the plan, and all further planning

is delayed until after the sensory actions and conditional are performed. In our example,

predetermination would be a viable option if the robot could just look across the room to

determine if the drill press table were clean, and if it knew there was very little chance that

the table would get messed up in the interim.

The fifth option, delay, is for the robot to plan the actions for getting to the drill press,

inserting the appropriate bit, setting the speed, and aligning, clamping, and drilling the

widget, but postpone planning for the subgoal of having a clean table. In this case, the
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robot would start executing the partial plan by moving to the drill press, changing the bit,

and setting the speed. Then it would run into the unplanned subgoal that the table must be

clear. This would require that the robot stop to check this subgoal, and plan to accomplish

the subgoal if it is not already true. Deferral would be a good option if 1) the planner were

fairly confident of its ability to generate a plan for cleaning the table, and 2) if there were

no critical time constraints imposed on the robot during execution.

To choose between the different alternatives for dealing with uncertainty we need to be

able to evaluate the expected cost of the plans that result from each of these alternatives. In

equation (6) we already have the basic tools necessary to do this; we just need to substitute

the appropriate action for dealing with the uncertain clause, c, into the equation. We start

with the simplest case, coercion, and then consider assumption, and finally, conditional plans

and predetermination.

3.4.1 Coercion

Given the conjunction e, let c refer to the uncertain clause in e that the planner is concerned

with. As before, let p refer to the set of conjuncts in e that precede c in the temporal order,

and let q represent the set of conjuncts in e that follow c in the temporal order.

Expanding equation (6) we get:

E(e, g, s) = E(p, g, s) + A(p, s)
[
E(c, g, s|p) + A(c, s|p)E(q, g, s|p|c)

]
(7)

Since we are assuming that c will be coerced, no further reduction of this equation is neces-

sary, provided that the best plan for achieving c in s|p will be used.

3.4.2 Assumption

For the case of assumption, the analysis is a bit trickier. First of all, we assume that, if c

doesn’t hold, other actions will get performed before the error is discovered. If the planner

has already completed planning for the conjuncts in q it may be possible to predict the point

at which an error in the assumption will be discovered.

Let q1 represent the subset of q that will be attempted before the problem with c is

discovered, and let q2 be the remainder of the conjuncts in q. As before, we first have the

expected cost term, E(p, g, s) of achieving p. Since c is being assumed, there is no cost

associated with that part of the plan, and it will always be successful. As a result, the cost

of achieving q1 will always be incurred. Assuming that q1 is achieved we then have two terms,

depending on whether or not the assumption about c was actually correct. If it is, the cost

of achieving q2 is incurred. Otherwise, the cost of achieving g in this new “mangled” world

23



will be incurred. Putting all of these terms together, we get:

E(p, g, s) + A(p, s)
[
E(q1, g, s|p) + A(q1, s|p)

[
P (c, s|p)E(q2, g, s|p|q1)

+ P (¬c, s|p)E(F , g, s|p|q1)
]] (8)

where F refers to the empty plan that always fails. Thus

E(F , g, s) = C(g, s) + A(g, s)I(g).

We can simplify the above equation slightly by noting that

E(q1, g, s|p) + A(q1, s|p)P (c, s|p)E(q2, g, s|p|q1)

= E(q, g, s|p|q1)− A(q1, s|p)P (¬c, s|p)E(q2, g, s|p|q1)

If we substitute this into equation (8) we get

E(p, g, s) +A(p, s)
[
E(q, g, s|p) +A(q1, s|p)P (¬c, s|p)

[
E(F , g, s|p|q1)−E(q2, g, s|p|q1)

]]
(9)

Since we are assuming that pcq is a good plan for achieving g, we know that it will be at

least as difficult to achieve g in s|p|q1, as it will be to achieve q2. This means that the

E(F , g, s|p|q1)− E(q2, g, s|p|q1) term is always greater than or equal to zero.

Suppose we compare equation (9) with equation (7), the expected cost for coercion. The

initial E term, and the A(p, s) multiplier are the same for both equations, so we can cancel

these terms. Comparing the remaining terms we see that assumption is preferable to coercion

if and only if

E(q, g, s|p) + A(q1, s|p)P (¬c, s|p)
[
E(F , g, s|p|q1)− E(q2, g, s|p|q1)

]
≤ E(c, g, s|p) + A(c, s|p)E(q, g, s|p|c)

As it stands, this equation is not particularly illuminating. Suppose we make the simplifying

assumption that the achievement of c in s|p does not significantly affect the cost of achieving

q. We can then collect the E terms for q on the left hand side giving:

Theorem 2 Assumption is preferable to coercion if and only if

A(c, s|p)E(q, g, s|p) + A(q1, s|p)P (¬c, s|p)
[
E(F , g, s|p|q1)− E(q2, g, s|p|q1)

]
≤ E(c, g|s|p)

From this, we see that as the cost of achieving the condition c goes up, assumption becomes

a better alternative. Likewise, as the probability that c will hold in s|p increases, assumption

becomes a better alternative. Conversely, as the difficulty of achieving g in the mangled world

s|p|q1 increases, coercion becomes the better option. All of these match our intuitions about
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what should happen. A somewhat less intuitive observation is that if there is significant

chance that c may not be achievable in s|p then coercion may be the better alternative. This

is because it is less costly to fail early than late.

One final note is in order; the planner may not always know q1 and q2. In this case it

seems better to be conservative and assume q1 = q and q2 = ∅; that is, assume that if the

condition c fails to hold, the entire rest of the plan will be performed before the error is

detected. In this case, the E(q2, g, s|p|q1) term drops out in the above comparison.

3.4.3 Conditional

Until now, we have not talked about conditional statements or sensory actions in plans.

In order to talk about these, we need to introduce some new notation. We will use the

expression ?c to indicate the goal of determining whether or not c is true in the world. The

expression 〈?c, a, b〉 will refer to the conditional action of first determining c, then achieving

a if c is true, and b otherwise.

The cost of performing a conditional statement 〈?c, a, b〉 can be expressed in terms of the

costs of the individual steps ?c, a, and b. First, there is the cost of determining whether

or not the condition c is true. This is given by E(?c, g, s). Suppose that the status of c is

successfully determined (many effectory and sensory actions may be required). Then if c is

true, the cost E(a, g, s|?c) will be incurred, otherwise, the cost E(b, g, s|?c) will be incurred.

Thus:

E(〈?c, a, b〉, g, s) = E(?c, g, s) + A(?c, s)
[
P (c, s)E(a, g, s|?c) + P (¬c, s)E(b, g, s|?c)

]
Given our conjunction e = pcq, we can now use this to express the cost of the conditional

plan that involves checking c, achieving q if c holds, and using some alternate plan to achieve

g otherwise. (For simplicity, we are only considering the case where the sensory action occurs

immediately before the condition c must be accomplished.) We get:

E(p〈?c, q,F〉, g, s)

= E(p, g, s) + A(p, s)E(〈?c, q,F〉, g, s|p)

= E(p, g, s) + A(p, s)
[
E(?c, g, s|p) + A(?c, s|p)

[
P (c, s|p)E(q, g, s|p|?c)

+P (¬c, s|p)E(F , g, s|p|?c)
]]

(10)

While it is true in general that the planner may want to consider an entirely different

plan for achieving g if c does not hold in the world, often the appropriate course is simply

to achieve c if it doesn’t already hold. We will refer to this as conditional coercion. For this
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alternative, the expected cost equation will be:

E(p〈?c, q, cq〉, g, s)

= E(p, g, s) + A(p, s)E(〈?c, q, cq〉, g, s|p)

= E(p, g, s) + A(p, s)
[
E(?c, g, s|p) + A(?c, s|p)

[
P (c, s|p)E(q, g, s|p|?c)

+P (¬c, s|p)E(cq, g, s|p|?c)
]]

= E(p, g, s) + A(p, s)
[
E(?c, g, s|p) + A(?c, s|p)

[
P (¬c, s|p)E(c, g, s|p|?c)

+A(c, s|p|c?)E(q, g, s|p|?c|c)
]]

(11)

If we assume that ?c can always be achieved, and that achieving ?c doesn’t mess up the

world, this equation can be simplified to be:

E(p, g, s) + A(p, s)
[
C(?c, s|p) + P (¬c, s|p)E(c, g, s|p) + A(c, s|p)E(q, g, s|p|c)

]
(12)

Suppose we compare this with equation (7), the equation for coercion. As before, the initial

E and A terms drop out. The final terms in both equations also drop out. As a result, we

get

Theorem 3 Conditional coercion should be preferred to coercion if and only if

C(?c, s|p) ≤ P (c, s|p)E(c, g, s|p)

Proof: From the equations we know that conditional coercion will be preferred to coercion

if and only if

C(?c, s|p) + P (¬c, s|p)E(c, g, s|p) ≤ E(c, g, s|p).

Collecting terms gives the desired result.

3.4.4 Predetermination

As we mentioned earlier, predetermination is a special form of conditional planning, where

the sensory action and conditional are pushed all the way to the beginning of the plan.

Predetermination usually also implies that planning is deferred for all subsequent actions

in the plan, but this is not really the important issue in comparing predetermination with

conditional planning, since deferral could equally well be applied to one or both branches

of an ordinary conditional plan. The important difference between predetermination and

conditional planning is the difference in sensing cost between the beginning of the plan, and

the time at which the condition must be accomplished.
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If we ignore the issue of deferral, the expected cost for a plan produced by predetermi-

nation will be:

E(〈?c, pq, pcq〉, g, s)

= E(?c, g, s) + A(?c, s)
[
P (c, s|p)E(pq, g, s|?c)+ P (¬c, s|p)E(pcq, g, s|?c)

]
= E(?c, g, s) + A(?c, s)

[
E(p, g, s|?c) + A(p, s|?c)

[
P (c, s|p)E(q, g, s|?c|p)

+P (¬c, s|p)E(cq, g, s|?c|p)
]]

(13)

Suppose we assume that the performance of ?c, and the achievement of c do not signif-

icantly change the cost or likelihood of achieving either p or q. Then we can simplify the

above expression to be:

E(?c, g, s) + A(?c, s)
[
E(p, g, s) + A(p, s)

[
P (c, s|p)E(q, g, s|p)

+P (¬c, s|p)E(cq, g, s|p)
]] (14)

If we further assume that ?c can always be achieved (although perhaps at considerable

cost) the above expression can be further simplified to

C(?c, s) + E(p, g, s) + A(p, s)
[
P (c, s|p)E(q, g, s|p) + P (¬c, s|p)E(cq, g, s|p)

]
(15)

In comparing this with equation (12) we note that the only difference is in the cost term for

?c. Whenever

C(?c, s) ≤ A(p, s)C(?c, s|p)

predetermination should be preferred over a conditional plan; that is, whenever the cost of

determining c is lower initially than at the time when c needs to hold, predetermination

should be preferred. Note that this only holds when A(?c, s) ≈ 1. When A(?c, s) � 1 the

cost term, E(?c, g, s), will become large, and a conditional plan will be preferred.

Note that these costs do not take planning time into consideration. To make the com-

parison fair in this regard, we are assuming that planning will be delayed for both branches

of the conditional plan.

3.5 Deferral

Deferral is quite different from the other options for dealing with uncertainty. Even though

planning may be deferred for a condition c, it will still be necessary to decide what to do

about the condition later on. The decision is therefore delayed, but not eliminated. In our

example, after the robot gets to the drill press, and performs various setup operations, it will

still need to decide what to do about the precondition of having a clean table. It could decide
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to assume the condition, to force the condition to be true (coercion), or to sense the condition

and insert a conditional. As a result, it seems more sensible to regard deferral not as a means

of coping with uncertainty, but rather as a means of avoiding planning for conditions that

are relatively unlikely to occur. In fact, we might want to apply deferral to clauses other

than those suffering from uncertainty. For example, after inserting a conditional into a plan,

it might be appropriate to defer planning on either one or both branches of the conditional,

even though the status of the conditions in those branches may be known with certainty.

As we just implied, the advantage to deferring planning for a condition is to avoid doing

planning for a situation that is unlikely to actually occur. If it is unlikely that the drill press

table is dirty, then constructing a plan for cleaning the table would usually be wasted effort.

If planning cost were the only consideration, we would want our planner to defer work on

every subgoal until the moment that it needs to be achieved. However, there are two other

factors that need to be considered before deferring planning for any given clause:

1. temporal constraints on the planning process,

2. potential inaccuracy of the cost and probability models.

Time constraints on the planning process can either favor or oppose deferral. If there are

time critical sequences of operations in a plan, there may not be enough time in between

steps to allow for planning of deferred conditions. For example, our shop robot might

need to perform a series of fabrication operations quickly while a material remains at a

given temperature and consistency. Conversely, if there is little time before a plan must be

initiated, the planner may not have enough time to fill in all the details before beginning

execution of the plan. As an example of this, our shop robot might need to proceed to the

drill press immediately, because access to the drill press is about to be blocked by other shop

operations.

Initially, we do not intend to consider this issue, because, for the most part, our intended

application does not have these kinds of critical time constraints. In other words, we are

assuming that the cost of planning before execution is the same as the cost of planning

during execution.

A second consideration that bears on deferral decisions is the accuracy of cost and prob-

ability of success models. Suppose that achieving a particular subgoal clause is expected to

be easy, but turns out to be difficult or impossible when detailed planning is attempted. If

planning for the clause is deferred, the planner would not discover the inaccuracy until after

potentially irreparable changes have been made to the world. The result may be that the

robot can no longer achieve its goal. As an example of this, suppose that the robot believes

it will be easy to clean the drill press table and therefore defers planning for this contingency.

After arriving at the drill press and setting everything up, suppose that the robot finds that
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the table is dirty. But now, access to the vacuum cleaner may be blocked by some other

operation in the shop. As a result, cleaning the table could be hard or even impossible.

However, if the robot planned for the cleaning subgoal ahead of time it might discover the

potential difficulty in fetching the vacuum cleaner, and modify its plan accordingly.

As in the previous sections we would like to be able to write down an expected cost

expression that will allow us to decide whether planning for a given clause should be deferred

or not. Unfortunately, we do not have the necessary information to be able to do this. In

order to describe the benefits of deferring planning for a clause we would need to have a

model of the expected cost of generating a plan for achieving the clause. Unfortunately we

don’t have models of planning cost. The other factor that we need is the potential damage

that might result from deferral if the condition turns out to be much harder to achieve than

expected. Unfortunately, we have no information about the accuracy of our cost models.

Ultimately, it may be necessary or desirable to provide such models to a planner. But for

now we will use a simple intuitive approximation to decide when planning should be deferred

for a condition.

Given a conjunction e = pcq, where c is the clause the planner is currently concerned

with, we will assume that deferral of planning for c is advantageous whenever

A(p, s)E(c, g, s)� I(g).

According to this equation, when c is unlikely to be needed, or when c is easy to achieve,

deferral is a sensible option. This matches our intuition that when the difficulty of achieving

c increases, the planner needs to plan for c more carefully, to assure that c can actually be

achieved.

For clauses in a conditional plan, the above expression needs to be changed slightly;

in this case, we need to include the probability that the conditional branch will be taken.

Thus, if the plan we are considering is p〈?c, q, r〉, we will assume that the planner should

delay planning for q whenever

A(p, s)P (c, s)E(q, g, s)� I(g).

4 Final Remarks

In this paper we have laid the theoretical foundations for a decision theoretic approach to

the control of search for a general purpose planner. We showed how this approach could be

used to

1. choose between alternative actions for achieving a subgoal,

2. choose the order in which to plan for conjuncts in a conjunctive goal or subgoal,
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3. decide when assumption, or the insertion of conditionals was desirable,

4. decide when to defer planning for subgoals.

As we have noted throughout the paper, there are a number of loose ends that still remain

to be tidied. First of all, as mentioned in Section 3.2, our notation for talking about the

state of the world after failure is not yet adequate. Second, some work remains to be done

to expand the treatment of temporal and planning orders for conjunctions to the uncertain

world. Third, our treatment of deferral is considerably less rigorous than we would like. A

fourth problem is with our use of A, the achievability of a proposition. In writing all of our

cost equations we have assumed that if an action did not achieve the desired result it would

be noticed immediately. In reality this is not always true, especially for robots with limited

sensory abilities. As a result, we need to change the meaning of A to refer to the probability

that an action will be perceived as successful. It is not yet clear how this will effect the

various equations.

But perhaps more important than these problems, are the many empirical questions

raised by this research. Will it be practical to provide the appropriate cost and probability

models needed in order to make use of these techniques? We speculate that it will, but this

remains to be demonstrated. If so, how much overhead will be incurred in order to do the

necessary expected cost computations? The overhead should add only a constant factor to

each planning step, while the savings of this kind of control should be exponential. But, this

also remains to be demonstrated.

Because these empirical questions are so crucial to the utility of this approach, we intend

to direct our energy towards implementation of these techniques in a working planning sys-

tem. As an application area we will be working with a system for disassembly and reassembly

of simple electro-mechanical objects given models of their components and relationships.
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