
Incremental Graphplan

David E. Smith and Daniel S. Weld

Technical Report UW{CSE{98-09{06

September 1998

Department of Computer Science and Engineering

University of Washington

Incremental Graphplan

David E. Smith

Nasa Ames Research Center
Mail Stop 269-2

Mo�ett Field, CA 94035 USA
de2smith@ptolemy.arc.nasa.gov

Daniel S. Weld

Dept. Computer Sci. & Engr
University of Washington

Seattle, WA 98195{2350 USA
weld@cs.washington.edu

January 19, 1999

1 Introduction

One can avoid duplicated work during plan expansion (or regression focussing)
by exploiting the following observations concerning monotonicity in the planning
graph.

� Propositions are monontonicaly increasing: if proposition P is present at
level i it will appear at level i+2 and in all subsequent proposition levels.
Proof sketch: if P appears at i then a nop will preserve it to the next
proposition level.

� Actions are monontonicaly increasing: if action A is present at level i it
will appear at level i+2 and in all subsequent action levels. Proof sketch:
if an action's preconditions appear at level i � 1 then nops will preserve
them, and no new mutexes will appear.

� Mutexes are monotonically decreasing: if mutex M between actions A
and B is present at level i then M is present at all previous action levels
in which both A and B appear. The same is true of mutexes between
propositions. Proof sketch: if A and B appear at both level i and i � 2
and are mutex at level i then by de�nition this mutex must be due to
inconsistent e�ects, interference, or competing needs. If the mutex is due
to the �rst two reasons then the mutex will occur at every level containing
A and B. However, if the mutex is due to competing needs then there
are preconditions P and Q of A and B respectively such that P is mutex
with Q at level i � 1. This propositional mutex can only result from the
fact that all level i � 3 actions supporting P and Q are pairwise mutex,
so an inductive argument (combined with action monotonicity) completes
the proof.

1

� Nogoods are monotonicaly decreasing: If subgoals P , Q, and R are un-
achievable at level i then they are unachievable at all previous proposition
levels. Proof sketch: if they were achievable at level i � 2 then adding a
level of nops would produce a plan at level i.

These observation suggest that one can dispense with a multi-level planning
graph altogether. Instead, all one needs is a bipartite graph with action and
proposition nodes. Arcs from propositions to actions denote the precondition
relation and arcs from actions to propositions encode e�ects. Action, propo-
sition, mutex, and nogood structures are all annotated with an integer label
�eld; for proposition and action nodes this integer denotes the �rst planning
graph level at which the proposition (or action) appears. For mutex or nogood
nodes, the label marks the last level at which the relation holds. By adding an
additional set of labels one may interleave forward and backward expansion of
the planning graph. Using this scheme, the space costs of the expansion phase
are vastly decreased.

2 Incremental Update

Using the representation outlined above, it is possible to update the graph in an
incremental fashion. More precisely, we can keep track of what has changed in
the graph, and only examine those propositions, actions and mutex relationships
that can be a�ected by the changes. In particular:

� Adding a proposition to the proposition set can result in actions added to
the action set

� Adding an action to the action set can cause propositions (e�ects) to be
added to the proposition set, and/or can cause mutex relationships among
propositions (e�ects) to terminate.

� Terminating a mutex relationship between propositions can cause actions
to be added to the action set, and/or cause mutex relationships between
actions to terminate.

� Terminating a mutex relationship between actions can cause mutex rela-
tionships between propositions (e�ects of the actions) to terminate.

This is illustrated in the causation diagram of �gure 1.
Using this incremental approach, the time required in the expansion phase

is reduced in proportion to the reduction in space. The bookeeping for this
incremental update is surprisingly tricky.

3 De�nitions and Notation

There are really two di�erent types of mutex relationships, those that can go
away, and those that are permanent. We refer to these as eternal and circum-

2

new
prop

new
action

new
effect

new
support

termin
prop

mutex

term
action
mutex

Figure 1: Causation Diagram

stantial mutex relationships. (This distinction turns out to be useful in the
algorithms below, because it saves a certain amount of checking.)

De�nition: Two propositions are eternally mutex i� the propositions are
contradictory (negations of each other). Two propositions are circumstantially
mutex i� they are not inherently mutex and all actions giving rise to them are
mutex.

De�nition: Two actions are eternally mutex i� either

� one action clobbers the other's preconditions or e�ects, or

� the actions have eternally mutex preconditions

Two actions are circumstantially mutex i� they are not inherently mutex and
their preconditions are circumstantially mutex.

The following notation is useful.

1. Assume all actions have the same duration (two time units) This is a bit
strange, but keeps times consistent with standard graphplan level num-
bering

2. Time is numbered with propositions at even times, actions at odd times

3. If prop p is labeled 2. written p@2, it �rst appears at time 2. Sometimes
we say p[2

4. If mutex m is labeled i writtem m@i, it's present at i but no higher. Equiv-
alently m)i+2

4 Expansion Algorithm

Let t := 0

Let newprops := the set of literals that are initially true

3

For each p in newprops do

Add p@t to the graph

Let term-p-mutex-pairs := {} ; note this is a list of pairs, not of mutexes

Loop

If all goals present and nonmutex do solution extraction else

t := t+1

Let A = the set of newly executable actions

(i.e. those not in the graph but whose preconds are present nonmutex)

; Consider nop actions explicitly

; An optimization: only need consider actions w/ a precond in newprops

; Or two preconds related by a mutex in term-p-mutex

Let newprops, newsupp := {}

Forall a in A do

Add a@t to the graph

For each literal p in the effect of a

If p is already in the graph

Then push p on newsupp; link a to p

Else push p on newprops; add p@t+1 to graph; link a to p;

; Now add all eternal mutexes between a and other actions in the graph:

; 1) the actions can have opposite effects,

; 2) one action can clobber the other's preconditions, or

; 3) the actions' preconditions can be eternally mutex

; And add circumstantial mutexes between a and other actions present

For each effect e of a:

If ~e exists then add an eternal mutex

between a and all producers or consumers of ~e

For each precondition p of a

If ~p exists then add an eternal mutex

between a and all producers of ~p

For each q mutex with p

If the mutex is eternal then add an eternal mutex

between a and all consumers of q

Else add a circumstantial mutex (with nil label)

between a and all consumers of q ; if not already exist

For each pair <p,q> in term-p-mutex-pairs do

For each action a with p as precond

For each nil-labeled circumstantial mutex m2 between a and b

If b has q as precond

Then pairwise check all preconds of a,b

If a,b no longer mutex,

Then label m2 with t-2, and ; or label "m)t"

add all effects of a (or of b) to newsupp

; Note: this could be optimized by sorting term-p-mutex-pairs on <p,>

; And then coalesing <p,q> with adjacent <p, r> to get <p, {q,r}>

; And checking both q and r and ... in the line "If b has q as precond"

; Note line labeled "***" ensures that eliminated action mutexes

4

; cause subsequent prop mutexes to disappear when appropriate.

; is there a more efficient way?

Let t := t+1

Let term-p-mutex-pairs = {}

For each p in newprops

Add all eternal mutexes between p and old or previously-handled props

;; better to add the eternal mutexes earlier (with actions)?

Add circumstantial mutexes between p and ... (with nil label)

; Note: we know all supporting actions by now, so this is fine

For each p in newsupp

For each circ mutex m (with nil label) between p and some other prop q

; Note avoid trying pq AND qp by restricting to canonical order p<q

Check m's mutex conditions (are all supporting actions pairwise mutex

either eternally or circumstantially with label of t-1 or nil)

If not, label m with t-2

Add <p,q> to term-p-mutex-pairs

5 Regression Focussing

Using a slight modi�cation to the data-structures described above, one may do
completeness-preserving regression focussing in an incremental fashion as well.
The basic idea is to associate another set of labels with actions and propositions
which records how many time steps before the goal these nodes become rele-
vant. For goal propositions, these labels would be zero. Action that produced
goal conjuncts would have a label of negative one, and preconditions of these
actions would have a label of negative two. One can incrementally update these
labels as well using whatever control strategy one wishes. For example, one
could alternate expanding the graph (in-place) forward with a regression phase.
Backward-chaining solution extraction need only be enabled when the frontiers
from these two phases meet.

5

